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ABSTRACT 

The objective of this thesis is two-fold. The first goal is to expand the operational 

capabilities of the Ship's Service Converter Module control algorithm for a DC-to-DC 

converter using the Universal Controller. The second goal is to investigate the use of the 

Universal Controller to implement a closed-loop control algorithm for an Auxiliary 

Resonant Commutated Pole (ARCP) power inverter. These power electronic devices are 

central to the development of a DC Zonal Electric Distribution System (DC ZEDS) that is 

scheduled for application in the twenty-first century surface combatant (SC-21). The 

development of appropriate control algorithms is a key element to this design process. 

The Universal Controller is a digital controller that was developed by personnel at the 

Naval Surface Warfare Center (NSWC), Annapolis, Maryland. The basic operation of the 

Universal Controller and the Texas Instrument TMS320C30 microprocessor architecture 

are described, with emphasis placed on the system control algorithms. 

Previous studies have encoded and successfully tested a closed-loop control 

algorithm for a DC-to-DC converter. In this research endeavor, this control algorithm is 

expanded to include various protection circuits and a Master/Slave paralleling scheme. 

Finally, a closed-loop control algorithm for the, ARCP inverter is encoded and 

recommendations for future research are outlined. 
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I. INTRODUCTION 

A. DC ZONAL ELECTRICAL DISTRIBUTION 

Downsizing is a reality in the military of today. The United States Navy is 

continually tasked with finding ways to meet operational commitments as well as satisfy 

the research and development requirements needed to continually upgrade capabilities. 

One area the Navy is investigating is the use of a DC power distribution system for the 

next generation of ships. The project is referred to as DC Zonal Electrical Distribution 

System (DC ZEDS) [Ref. 1]. Figure 1-1 shows a simplified block diagram of a proposed 

DC ZEDS system. 
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Figure 1-1 DC Zonal Electrical Distribution System [Ref. 2] 



Power distribution under this system is accomplished by rectifying AC into DC 

as soon as it is generated. The ship is divided into zones and the DC power is routed to 

these zones on two primary DC busses (Port DC bus and Stbd DC bus). Upon entering 

the zone, the DC power is stepped down using Ship's Service Converter Modules 

(SSCMs) that act as buffers for the zones. The power is then further stepped down using 

more SSCMs or converted back to AC using Ship's Service Inverter Modules (SSIMs). 

DC power distribution can increase survivability by speeding up the fault detection and 

switching process, and because DC ZEDS requires significantly less cabling and 

essentially no transformers, it is projected to produce large savings in both the weight 

and the cost of next generation ships. [Ref. 1] 

The SSCMs are actually buck chopper converters that are used to step down and 

regulate the DC voltage entering the zone. The SSIMs are Auxiliary Resonant 

Commutated Pole (ARCP) inverters that convert the DC into three-phase (3((>) AC [Ref. 

2]. Both SSCMs and SSIMs require feedback control and monitoring to be useful in a 

DC ZEDS environment because the systems must be stable and allow for fast transient 

response in the dynamic environment aboard U.S. Navy ships. Digital control has 

proven to be more flexible due to the ability to modify the control algorithm with 

simple software changes vice the extensive hardware changes required in analog systems. 

For DC ZEDS to be successful, effective control algorithms for SSCMs and SSIMs must 

be developed. 



B.       RESEARCH FOCUS 

The focus of this thesis is on using the Power Electronic Building Blocks (PEBB) 

Universal Controller, developed by the engineers at Naval Surface Warfare Center 

(NSWC), to expand the operational capabilities of the SSCM control algorithm and to 

implement a closed-loop control algorithm for the SSIM. The PEBB Universal 

Controller is a two-card digital controller designed to handle the extensive Input/Output 

(I/O) requirements needed to control both buck chopper converters and ARCP 

inverters. Closed-loop control for a typical ARCP inverter requires the conversion of as 

many as 10 voltage and current signals and the generation of as many as 12 different 

control signals. These control signals are used to gate on and off the electronic switches 

and modify the duty cycle. The Universal Controller has no user's manual. Previous 

research [Ref. 3] documented, in part, how the Universal Controller works and how to 

implement control algorithms using it. Chapter II of this thesis documents in greater 

detail the actual operation of the Universal Controller. 

The Universal Controller is based on the Texas Instrument TMS320C30 

microprocessor. This is a general purpose microprocessor designed for DSP applications. 

Chapter DI delves into the architecture of this chip and how it gives flexibility to the 

Universal Controller. 

Previous research [Ref. 3] has included the encoding and successful testing of a 

closed-loop control algorithm for the SSCM, the buck chopper. Several additional 

operational features were desired by NSWC. Over-current protection, under-voltage 

protection, over-temperature protection, and the ability to operate the bucks from a 

remote front panel were all desired features that were not incorporated in the original 



buck control code. Chapter IV of this thesis contains a discussion of the theory and 

changes required to implement these features. 

The present SSCM closed-loop control algorithm implementation [Ref. 3] 

allowed for individual control of multiple buck choppers. Problems developed when 

trying to operate these units in parallel at Power Paragen, Inc., Anaheim CA. One buck 

had a tendency to take over and try to supply the entire load while the other unit floated 

at no load. The changes made to operate the buck chopper converters in a Master/Slave 

configuration that provides the proper current sharing required for successful parallel 

operation are documented and discussed in Chapter TV as well. 

The TMS320C30 has the ability to be programmed in both assembly language 

and C. Closed-loop control algorithms use complex mathematical functions to calculate 

the desired control signals. The current encoded control algorithms are written in 

assembly language. This code is lengthy and very complex. Great benefits would be 

derived from using C code functions to implement the control algorithms. C code, being 

a high-level language, uses instructions that more closely resemble common mathematical 

statements. Using C would greatly improve the readability of the software which 

would, in turn, facilitate easier modifications. The possibility of converting parts of the 

existing program to C is investigated and reported on in Chapter V. 

NSWC engineers encoded an open-loop control algorithm for the SSIM, an 

ARCP inverter. Closed-loop control is desirable because it can reduce or eliminate 

changes that would occur in output voltages caused by changes in the load or input 

voltage [Ref. 4]. Chapter VI of this thesis contains a description of the current open-loop 

operation of the ARCP and the implementation of one proposed closed-loop control 



algorithm. Finally, Chapter VE contains a summary of research work completed, 

notable conclusions, and recommendations for future work. 





n. UNIVERSAL CONTROLLER 

A.       INTRODUCTION 

Digital control algorithms have proven more flexible than analog ones. Changes 

to digital controllers can be made relatively easily via software modifications. Analog 

changes require the removal and replacement of actual components. This can be very 

time consuming and expensive. Also, depending on component tolerances, the accuracy 

of the analog implementation may be less than acceptable. Digital algorithms, on the 

other hand, can be modified by changing numbers in software then reloading the new 

program. Any size change can be accommodated with the proper scaling, and accuracy 

can be achieved by "fine tuning" the changes in the software. 

Closed-loop control algorithms can be very I/O intensive. The ARCP, for 

example, has six (6) primary switches that require control signals to turn on and off the 

solid-state gates. Also, 3-phase power control implies 3 different phase current and 

voltage measurements that need to be sampled and manipulated. Finding an appropriate 

digital controller that can handle this many I/O signals is challenging. For this reason, 

the engineers at NSWC designed the Power Electronic Building Block (PEBB) Universal 

Controller, here in referred to as simply the Universal Controller. PEBB is a generic 

term for solid-state switching equipment being developed for Department of Defense 

(DOD) systems and Universal Controller implies that this controller is designed to 

handle a myriad of applications in addition to those discussed in this thesis. 



B. GENERAL DESCRIPTION 

The PEBB Universal Controller is comprised of two basic parts, a CPU board 

and an I/O board. Figure 2-1 shows a block diagram of the Universal Controller. The 

CPU board is based on the Texas Instruments TMS320C30 DSP microprocessor chip 

which will be covered in greater detail in Chapter HI. The CPU board also contains 

three (3) different types of memory and a microcontroller that directs the interface with 

the host PC. The I/O board contains the Analog-to-Digital (A/D) converters that 

provide the analog input to the Universal Controller and has several counter/timers used 

to generate interrupts and modify the output control signals from the board. 
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Figure 2-1 PEBB Universal Controller Block Diagram [Ref.5] 



Input to the Universal Controller comes from a host PC using the RS232 serial 

port on the back of the PC. Output from the Universal Controller is converted to 

optical gate control signals by optical transmitters on the I/O board. These signals are 

then sent out as control signals to modify switch operation. This provides a level of 

isolation between the Universal Controller and the high-power units being controlled. 

C.       PRIMARY COMPONENTS 

1. CPU Board 

The CPU board is built around the Texas Instrument TMS320C30 which, as 

stated earlier, is discussed in the next chapter. The microprocessor is supported by the 

Texas Instrument TI 8751 microcontroller and a memory section. Figure 2-2 shows the 

primary components of the Universal Controller CPU board. 

microcontroller dual port memory 

PROM PROM PROM PROM 
TMS320C30 

SRAM SRAM SRAM SRAM 

Figure 2-2 CPU Board of the Universal Controller [Ref. 3] 

The microcontroller is able to communicate both in serial or parallel modes. 

Any one of its 32 I/O pins can be addressed as an input, an output, or both. [Ref. 6] This 



is what gives the TI 8751 the flexibility to communicate serially with the host PC and yet 

read from and write to the dual port memory in parallel. 

The TI 8751 microcontroller also contains 4K bytes of Erasable Programmable 

Read Only Memory (EPROM) on-chip. This is used to hold the interface program 

supplied by NSWC. A copy of this code is located on PCPWR7, a personal computer 

located in Bullard Hall room 114. This code is what controls the interface between the 

Universal Controller and the host PC. It contains the memory map and instructions 

used for loading front panel information from the PC into the Universal Controller on 

start-up and it also directs the interrupts generated by the host PC used to initiate and 

terminate operation of the controller. 

The second major portion of the CPU board is the memory section. The 

memory section can be divided into three parts. The three types of memory located on 

the Universal Controller are 32K of EPROM, 32K of Static Random Access Memory 

(SRAM), and IK x 8-bit high-speed dual port static RAM. The EPROM part of memory 

is made by connecting four WSIWS57C256F 32K x 8-bit chips in parallel. Since the 

EPROMS have an 8-bit data word and the TMS320C30 uses a 32-bit data bus, an address 

decoder is connected to the four WSI EPROMS. This allows simultaneous access to the 

four memory chips and provides a 32-bit data word for the CPU. The EPROM memory 

is used primarily for storage of the operating program for the Universal Controller. 

The static RAM, or SRAM, is made up of four DDT71256SA fast 32K x 8-bit 

CMOS chips. Again, these chips are connected in parallel to an address decoder to 

provide a 32-bit data word similar to the EPROMs. The SRAM is primarily used for 

10 



data storage. It stores values such as the sin look-up table used by the ARCP program for 

calculating the control signals. 

The final type of memory is the IK x 8-bit high-speed dual port static RAM. It is 

connected between the microcontroller and the microprocessor. This memory is used to 

store information sent to the Universal Controller from the host PC until it is needed or 

until it can be loaded into the SRAM. This information includes, but is not limited to, 

command information that directs which algorithm to run, maximum and minimum 

currents and voltages, reference information used by the control algorithm, and the 

control constants needed by the control equations. Because the Universal Controller 

communicates serially with the host PC, access to this information is delayed a relatively 

long time. Using the microcontroller to direct this interface and load this information 

into the dual port memory for later use by the microprocessor greatly accelerates this 

process. A more in-depth discussion of the specifics of the Universal Controller's 

memory is available in Chapter HI of Reference 3. 

2. I/O Board 

The I/O Board of the Universal Controller can be divided into two main 

functional parts, an analog-to-digital interface portion and a counter/timer portion. 

Figure 2-3 shows the key components of the I/O board of the Universal Controller. 

The analog-to-digital interface part consists of 11 A/D converters used to convert 

voltage and current signals into digital words that can be used by the microprocessor. 

The counter/timer portion of the I/O board is made up of 4 counter/timer chips that 

contain 3 counters each and are used for various timing applications needed for control 

algorithm implementation. 

11 
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Figure 2-3 I/O Board of the Universal Controller [Ref. 3] 

The analog-to-digital interface is made up of 11 Maxim 500kbps A/D converters. 

Ten of these 12-bit converters are used to convert sensed voltages and currents that are 

imported to the control board from the SSCMs or SSIM. One is reserved for 

conversions of on-board values needed for different types of operation. Five memory 

locations are reserved for the A/D converters. Since the TMS320C30 uses 32-bit words, 

two (2) 12-bit A/D words can be stored in each location. Initiating a read of an A/D 

converter's memory location will read the value of the last conversion and initiate a new 

one. The first read is always discarded because it is the result of a previous, or time late, 

data sample. The second read represents a more real-time sample of the desired data and 

is saved for computations. Each conversion takes 2.6 usec which is considerably slower 

than the 60 nsec instruction execution time for the microprocessor. To allow for 

complete conversions, there is a wait loop or delay time programmed into the code 

12 



following each A/D read. Specifics on data step size and digital word selectivity of the 

A/D converters can be found in Reference 6. 

Four (4) Harris 82C54 counter/timers are located on the I/O board. Each 82C54 

contains 3 counters that can be set up in various modes of operation for use by the 

Universal Controller. The first counter/timer is operated in a rate generator mode. This 

counter/timer functions as the switching frequency timer. The desired switching 

frequency is programmed from the PC and converted to a count based on the clock 

speed and then loaded into the counter.[Ref. 3] The other two counters located on the 

same chip are loaded with the same switching frequency count only delayed either by 

120 degrees or 180 degrees of switching period, depending on the application. At a 

20 Khz switching frequency, 120 degrees of delay equates to 16.7 msec and 180 degrees of 

delay is 25 msec of difference between the first counter and the next. These counters will 

generate interrupts with the proper phase shifts needed by the Universal Controller to 

initiate sampling and run the control algorithms. 

The other three (3) Harris counter/timers are used as hardware retriggerable one- 

shots. Adjusting the count in these three (3) counters changes the duty cycle of the 

controlled solid-state switches. The duty counts calculated by the control equations are 

loaded into these counters. The output pulses of these three counters go to optical 

transmitters via three (3) PALs that convert the timer outputs into the necessary control 

signals for the SSCMs or SSM switches. Further details on the actual loading of these 

counter/timers and count calculation details can be found in Reference 7. 

13 



D.       OPERATIONAL OVERVIEW 

The process of operating the Universal Controller can be divided into several 

steps. The EPROMS are programmed, loaded into the Universal Controller CPU 

board, and power is applied. The next step is to load the operation and control values 

from the host PC and begin operation. Once the program is running, phase interrupts 

generated by the switching frequency timer will run the control algorithms. The 

Universal Controller will continue operating in this interrupt driven mode until the unit 

is shut down. 

Operation begins with loading the operating code for the microprocessor onto 

the EPROM's. To do this, the code is assembled, linked, converted to the proper format 

and "burned" into the PLDs. The assembler is loaded on PCPWRP-8 located in Bullard 

Hall room 114. This is an older PC that uses DOS 3.x as an operating system. This 

machine is still used to assemble the code because it also has the ALL-03A Universal 

Programmer and Tester attached to it which programs the WSI PLDs. This allows the 

code to be assembled and loaded onto the PLDs all on the same system. To make the 

task of programming chips easier, batch files have been created. A batch file is a DOS file 

that contains a listing of executable instructions. To use a batch file, simply type the 

name of the file and it will execute the necessary instructions. Appendix A contains a 

listing of DOS commands and instructions for creating, modifying, and using batch files 

to assemble the code and load the executable object file onto PLDs. 

Once the code is loaded, the four (4) PLDs are inserted into the four (4) PROM 

slots [Fig. 2-2] as U5, U6, U8, andU9 on the CPU board. Then, when power is applied 

to the Universal Controller, the software program initializes the microprocessor, the 

14 



memory map, the counter/timers, and the interrupt structure and then waits for a "unit 

on" interrupt (interrupt 3 in the code) from the host PC. Reference 3 describes in detail 

the operation of the host PC and associated software. Figure 24 illustrates the program 

flow. The "unit on" interrupt starts the operation of the control algorithms. The front 

panel values are read and loaded into the dual port memory, the counter/timers (C/Ts) 

are loaded, the rest of the interrupts are enabled and the unit then waits for a phase 

interrupt to occur. 

Initialize the 
microprocessor, 

memory, and counter/ 
timers 

Load constants from 
host PC, load C/Ts, 

enable interrupts 

Run the apropropriate 
interrupt subroutine to 
implement the control 

algorithm. 

Figure 2-4 Program Flow for the Universal Controller 
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Interrupts drive the system. The interrupts occur with the correct phase 

relationship, and at the proper sampling rate determined by the switching frequency 

loaded in from the host PC. The interrupt subroutines sample the required voltages and 

currents; the microprocessor manipulates the data and calculates the duty cycle changes 

needed to produce the proper outputs. The counts loaded into the counters/timers that 

control the switching period of the IGBTs are modified. The outputs of these counters 

produce the control signals that are converted to optical signals and sent out to the 

SSCMs or SSIM. Again, all of these actions are controlled by the program run by the 

TMS320C30 microprocessor. The architecture of the TMS320C30 is discussed in the 

next chapter. 
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III. TMS320C30 ARCHITECTURE 

A. INTRODUCTION 

The TMS320C30 is the heart of the Universal Controller. It is a high-speed 

general-purpose microprocessor produced by Texas Instruments. It has an architecture, 

instruction set, and support system conducive to real-time digital signal processing (DSP) 

and ideal for application as the center piece of the Universal Controller. The 

TMS320C30 has a 60 nsec single cycle execution time that gives it the speed to execute up 

to 50 MFLOPS [Ref. 8]. Many functions that are often done with software are 

performed in hardware by the C30. This architecture allows a high level of parallelism 

to support pipelining which increases speed. The TMS320C30 supports multiple 

addressing modes. Six different types of addressing are available in five different modes. 

This gives the C30 the large amount of versatility needed to implement complex control 

algorithms. Texas Instruments provides several support programs with extensive 

documentation to aid in system development using the TMS320C30. It is this high-speed 

architecture, the flexible addressing modes, and the extensive support systems that makes 

the TMS320C30 ideal for use in the PEBB Universal Controller. 

B. ARCHITECTURE 

The TMS320C30 uses a register-based architecture. It consists of 12 control 

registers, 8 extended precision registers (also called accumulators) and 8 auxiliary 

registers. This register system give the C30 the flexibility to handle complex tasks using 

registers for storage. By decreasing the number of times the CPU needs to access 

17 



memory, the overall speed of the system is increased. The TMS320C30 also contains 

two auxiliary register arithmetic units (ARAU) that are used strictly for address 

calculations. The ARAUs can generate two (2) different addresses in a single clock cycle 

[Ref. 8]. They are used to calculate complex addresses such as addresses with 

displacement or addresses used in the circular addressing mode which are discussed in a 

later chapter. Being able to separately and simultaneously calculate memory addresses 

allows a great deal of pipelining. Pipelining is the overlapping of instructions being 

executed by the microprocessor which greatly increases speed of operation. In the case of 

memory access, using ARAUs to calculate memory addresses frees up the ALU to 

perform other tasking while the C30 is reading from or writing to memory. An added 

benefit of using ARAUs comes from freeing the other microprocessor registers, which 

would normally be used for memory address calculations, to be used as needed elsewhere 

in the program. 

In addition to the flexible register system, the TMS320C30 has other pieces of 

hardware that add to its overall speed. The C30 has a full function ALU that performs 

operations on 32-bit integers and 40-bit floating point data in a single clock cycle. There 

is also a Barrel shifter capable of performing up to 32-bit shifts in a single cycle which 

adds great flexibility for bit manipulation instructions. Finally, the TMS320C30 has a 

parallel floating point/integer multiplier. This multiplier allows floating point 

operations to be performed in parallel with ALU operations. The inputs to the 

multiplier are two (2) 32-bit floating point numbers and the result is a 40-bit floating 

point number [Ref. 8]. The instruction set of the TMS320C30 is written to support 

parallel instruction execution so programs can easily be written to take advantage of this 

18 



parallel architecture. Simultaneous use of the single cycle ALU, Barrel shifter, and 

parallel multiplier are possible in software [Ref. 8]. 

The registers, the ALU, and the parallel multiplier are all supported by an 

extensive 32-bit internal bus structure designed to allow a great deal of instruction 

overlap in execution. This bus structure is what enables the parallel instruction set. In 

addition to two (2) ARAU address buses and two(2) separate data busses that connect 

CPU registers to memory, another set of separate address and data busses are used for 

peripherals and yet another for Direct Memory Access (DMA). It is this extensive bus 

structure supporting the large amount of paralleling hardware and the flexible register 

system that makes the TMS320C30 well suited for use in the Universal Controller. 

C.       ADDRESS MODES 

Much of the flexibility of the TMS320C30 comes from the instruction set that 

supports it. This instruction set is quite powerful due in part to the numerous addressing 

modes available for use. The C30 supports five(5) different addressing modes and six(6) 

types of addressing. Table 3-1 shows a listing of the different addressing modes and types 

usedbytheTMS320C30. 

Five Addressing Modes Six Addressing Types 
General Addressing Modes Register Addressing 
Three-Operand Addressing Modes Direct Addressin £. 
Parallel Addressing Modes Indirect Addressing 
Conditional Addressing Modes Short-Immediate Addressing 
Circular Addressing Modes Long-Immediate Addressing 

PC-Relative Addressing 
Table 3-1 TMS320C30 Addressing Modes and Types 
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in 

An addressing mode is a grouping of instructions based on the syntax used when 

writing code. An addressing type is a grouping of instructions based on how data is 

accessed from memory or registers. Chapter 5 of Reference 8 provides a complete and 

thorough description of each mode and type of addressing. Not every type of addressing 

is available in every mode. For instance, the Three-Operand Addressing Mode allows 

only register addressing and indirect addressing because of the fields available in the 

instruction word. Examples of each mode and type of addressing can be found in 

Appendix B (the code). Circular addressing plays a very important role in the 

implementation of the control algorithms discussed in Chapter VI and will be covered 

more detail there. 

D.       PROGRAM DEVELOPMENT AND SUPPORT 

Texas Instruments provides an excellent support system for the TMS320C30 

microprocessor user. Numerous resources are available to aid in the design, 

implementation, and debugging processes. Figure 3-1 shows the TMS320C3x 

development environment supported by products from Texas Instruments. 

Software tools available include an Assembler/Linker allowing programming in 

assembly language, an ANSI C Compiler so C source code may also be used, and a 

TMS320C3x Simulator to allow for source code debugging of programs. The 

TMS320C3x Simulator was used extensively during the coding portions of this thesis to 

test code prior to EPROM programming. All three of these software products are 

loaded on PCPWR 8 located in Bullard 114. Appendix A contains an explanation of 

how to access and run the Assembler, Linker, and Compiler by using DOS commands 
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and batch files. Further information concerning the specific features provided by these 

products is available in their respective reference manuals [Ref. 9 and Ref. 10] which are 

also located in Bullard 114. The TMS320C3x Simulator is described in Reference 11. 

Included in this manual are installation instructions and an operational tutorial that 

proved quite helpful. 

C Source 
Files 

C Compiler 

Assembler j 
Source     J 

Macro 
I Source Files 

\7 

Assembler 

Archiver 

I 
Iz 
COFF 

Object File 

rts30.lib 

Archiver 

Macro 
Libraries 

other object |_ 
libraries 

\7 

Linker 

„ \7, 
Executable 

COFF 
Object File 

Object 
Format 

Converter 

Simulator 

\7 

TMS320C30 
EPROM 

Programmer 

Figure 3-1 Development Support for the TMS320C3x [Ref. 8] 

Other software products available and shown on Figure 3-1 are an Object Format 

Converter vised to convert executable code into a format compatible with PLD 

programming and an EPROM Programmer to do the actual programming of PLDs. 
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Again, these products are loaded on PCPWR 8 in Bullard 114. Use of the Object Format 

Converter is addressed in Appendix A of this thesis and a complete description of how to 

use the EPROM Programmer can be found in Appendix C of Reference 3. Also 

available from Texas Instruments but not shown in Figure 3-1 is an XDS Emulator. This 

is a hardware device that allows full speed program execution of TMS320C3x programs. 

The Power Systems Lab at the Naval Postgraduate School (NPS) does not have this piece 

of hardware so it will not be discussed in detail here. 

As has been shown, numerous resources are available from Texas Instruments to 

aid in the development of a TMS320C3x system. The C30 has a flexible instruction set 

with many addressing modes to allow flexibility in programming control algorithms. 

The architecture utilizes extensive paralleling to provide the speed needed for DSP 

control algorithms. The utilization of these characteristics as applied to buck chopper 

control is discussed in the next chapter. 
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IV. BUCK CHOPPER APPLICATIONS 

A.       INTRODUCTION 

A major component of the DC ZEDS system is the Ships Service Converter 

Module. The SSCM is a feedback-controlled buck chopper used to step down a DC 

voltage to a lower level. Figure 4-1 shows a basic schematic of a buck chopper. A buck 

chopper uses an electronic switch to "chop" an input DC voltage and an LC-filter to 

eliminate the high-frequency components to produce a lower, average DC value. 

_^ 

L 
>         + 

t Vout d [.. Switch 

Z 
Diode 

c - 
R   < 

Figure 4-1 Buck Chopper Basic Schematic [Ref. 3] 

In present Navy shipboard designs, the electronic switch is an Insulated Gate 

Bipolar Transistor (IGBT). Control signals applied to the gate of the electronic switch 

change the duty cycle of the switch and change the average DC voltage out. Figure 4-2 

illustrates the affect that the duty cycle of the switch has on one average DC voltage out. 

Figure 4-2 Average DC Voltage from a Buck Chopper [Ref. 3] 
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For continuous inductor current, the ideal steady-state relationship is given by 

V„=DSS*E (4-1) 

where 

Dss = steady-state duty cycle (t0„/Ts) 

E = input voltage 

Further details on buck chopper operation are listed in Reference 3. 

Previous research developed a closed-loop control algorithm for the SSCM. The 

Universal Controller has enough I/O capability to simultaneously control 2 buck 

choppers. Reference 3 details single and dual buck chopper control. System integrators 

at NSWC required some modifications to the software control that involved 

incorporating additional features not currently available. This chapter addresses the 

added under-voltage, over-temperature and over-current protection algorithms and 

documents the changes to the assembly code provided in Reference 3. The next section 

describes how these changes were implemented. Another added feature was the 

Local/Remote switch. Section C of this chapter outlines the changes to the interrupt 

structure and the code required to allow operation of an L/R switch. Finally, the buck 

choppers must be capable of operating in parallel and sharing the load proportionately. 

Section D addresses this issue and describes the changes made to implement a 

Master/Slave type control algorithm. 
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B.       PROTECTION CIRCUITS 

1. 24 volt Control Power Low/Over-Temperature 

Self protection requirements were established by personnel at NSWC for SSCM 

control operation. These requirements consisted of a 24 volt (control power) low 

shutdown, an over-temperature shutdown, and an over-current sense and shutdown. 

These changes needed to be incorporated in software. In the cases of 24 volt low and 

over-temperature, these changes merely consisted of reading a status words in from an 

external sense board that monitored these conditions and comparing the result to a word 

that corresponds to an admissible condition. The output from the sense board is 

connected to a general purpose I/O jack labeled connector JP-1 on the Universal 

Controller. 

BitO over-temperature slave 

Bitl over-temperature master 

Bit 2 under-voltage slave 

Bit 3 under-voltage master 

Table 4-1 Protection Circuit Bit Assignments 

Table 4-1 shows the bit assignments used for the general purpose I/O connector 

on the Universal Controller. Memory address location 804500h (d_output) is associated 

with the general I/O port and was used to test for errors. Only the four (4) least 

significant bits needed to be checked, so the rest were masked out. Since the requirement 

was for any one of the fault conditions to shut down the bucks, only one compare was 
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needed. All four bits were tested at once. If any one of them indicated an error, the 

system was shut down. The following code was added to interrupt subroutine 0 (isrO): 

LDI     @d_output,ARO 
STI      *AR0,R0 
AND 000fH,R0 
LDI    @cmd_ad,R4 
CMPI 0fH,R0 
BNE   R4 

set pointer to Gen I/O 
R0 = gen_I/Oword 
mask all but 4 lsbs 
Jump target if needed for shutdown 
see if word is good 
Shuts down Bucks 

Interrupt subroutine 0 was selected as the place to add the protection code 

because isrO will run in both local or remote mode. Local and remote modes of 

operation are explained in a later section. The third protection circuit code, over-current 

sense and shutdown, was placed in isrO for the same reason. 

2. Over-Current Sense and Shutdown 

The over-current sense and shutdown code was designed to monitor the average 

over-current and shut down the system whenever the average over-current exceeded 

150% of rated current. The problem caused by over-current is that the heat that builds 

up in the solid-state switches has no time to dissipate. As the average over-current 

increases, the operating temperature of the device rises and eventually the component 

fails. But, when the heat has a chance to dissipate, indicated by when the average over- 

current decreases, the components have a chance to recover and system shutdown is not 

required. The average over-current was calculated by integrating the over-current over 

time. This was accomplished by encoding the following equation: 

'over-current  average  ~   J\oul ~ * LVjUl \*~*-) 

where 116 represents 100% rated current in amps. 
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The actual encoding of the integral required several steps to accomplish. The 

integration was to be performed using the trapezoidal integration method as explained in 

Reference 3. Several lines of code and some new variables and constants had to be 

inserted to implement the integration digitally. 

The first step in encoding the over-current sense and shut-down code was to 

create a variable named T/2 that is equal to one-half the switching period. This value is 

calculated in the cmd 10 subroutine of the buck chopper code provided in Reference 3 

but was not saved for later use. The following line of code was inserted to accomplish 

this. 

STF    R0,*+AR3(tau_2)      ; Store T/2 

After saving T/2, several other variables and constants needed to be created. 

Table 4-2 contains a listing of the added constants and variables and their initial values: 

full 116.0 

limit 58.0 

io_m_116 0.0 

trip_m 0.0 

io_s_116 0.0 

trip_s 0.0 

Table 4-2 Added Variables for Over-Current Sense and Shut-Down 

The constant 'full' represents 100% of rated current while 'limit' represents the 

maximum amount of average over-current allowed. The terms 'io_m_116' and 

'io_s_116' are used to store the output over-current or (ioul — 116.0) for the master and 
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slave buck choppers respectively. The Riemann sums or average over-currents for the 

master and the slave are stored in 'tripjm' and 'trip_s'. 

The final step involved encoding the integral. Appendix B contains the entire 

code for the buck choppers with the over-current sense and shut-down portion inserted 

in isrO. Since the code for the master and the slave functions exactly the same, only the 

code for the master is outlined here. First, the value of 'full' is loaded into the 

microprocessor's general register seven (R7), then it is subtracted from the output current 

of the master. This creates the value of 'io_m_116[n]' which is stored for use in the next 

cycle as 'io_m_116[n-l]'. Next, the previous value of 'io_m_116' is added to the current 

value and multiplied by T/2\ The result represents the change in the average over- 

current for this small portion of time. This integral change is added to the previous total 

to produce the Riemann sum. If the sum is negative, the sum is reset to zero which 

assures a non-negative integral. The sum is stored for use during the next cycle and then 

compared to the limit. If the limit is exceeded, the subroutine branches to the cmd 0 

subroutine which shuts down the system. If the limit is not exceeded, the subroutine 

exits this portion of code and resumes normal operation. 

After coding the protection circuits, the next change provides for a Local/Remote 

(L/R) switch for system control and a front panel potentiometer adjustment for reference 

voltage in Local mode. 
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C.       LOCAL/REMOTE SWITCH MODIFICATION 

1. Specifications 

System integrators at NSWC requested that the buck choppers be equipped with 

some sort of front panel hard-wired controls to aid in troubleshooting and maintenance. 

A Local/Remote (L/R) switch that can select control of the buck choppers from either a 

front panel (Local mode) or from the host PC (Remote mode) was hard-wired in. The 

system needed to be able to be initialized and run in either local mode or remote mode 

and switched from one mode to the other during operation. When switched from mode 

to mode during operation, the system needs to shut down and restart in the new mode of 

operation because switching from one mode to the other would not be a "bumpless" 

transition. Two (2) voltage potentiometers were also connected to the front panel. They 

provided a course and fine adjustment for the reference voltage when the units were 

operating in Local mode. Software changes were required to enable operation of the 

front panel. 

2. Application 

In order to enable the front panel, the TMS320C30 had to be able to recognize 

and monitor the position of the L/R switch. Bit 5 of the general purpose I/O port, used 

previously by the protection circuits, was used to carry the L/R switch position. The 

reference voltage potentiometer signals were added together and sent as one input to the 

general purpose I/O port. This voltage was sent to an onboard A/D converter to create 

a voltage word usable by the Universal Controller. Once the TMS320C30 could access 

this information, changes to the software were made so it could process this information. 
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The normal program flow for the buck chopper control program was discussed 

in Chapter 2. As mentioned there, after initialization of the microprocessor, the 

program waits for an interrupt from the host PC. When the interrupt (interrupt 3) is 

received, the control values are loaded in from the PC, the Universal Controller 

initialization is completed and the program waits for phase interrupts to start controlling 

the system. When not processing an interrupt, the program is in a No Operation (NOP) 

loop waiting for the next interrupt. It continues this operation until it receives an 

interrupt from the PC to shut down the system. This defines remote operation. For 

local operation, the Universal Controller reads the reference voltage from the front panel 

potentiometers, uses this Vref to calculate the changes to the duty cycle and therefore 

control the system. In order to start up the system in Local mode, a table of default 

control values had to be loaded into memory. Then, when starting up in Local mode, 

this table would be read instead of the control values from the host PC. As previously 

mentioned, switching from one mode to the other needed to cause a shut down of the 

system and a restart in the proper mode. Now that the modes of operation have been 

defined, the algorithm dictating how the Universal Controller monitors the L/R switch 

position and transitions between modes must be discussed. 

It was determined that the interrupt structure of the control program would have 

to be changed. The Universal controller needed to check the L/R switch position on 

initial power-up and monitor its position throughout the entire operation of the 

program. It could no longer just wait for an interrupt from the PC. This created two (2) 

different start-up scenarios that had to be accounted for in the code, either start-up in 

Local mode or start-up in Remote mode. The Universal Controller needed to be able to 
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recognize a switch change from Local to Remote or vice versa. An internal timer 

interrupt was set up to check switch position. The previous switch position was saved to 

provide the ability to compare current position (sw[n]) with the previous position (sw[n- 

1]). This created four (4) possible run-time scenarios that also needed to be programmed 

into the code: 

1) Switch previously in Local, stays in Local. 

2) Switch previously in Local, switched to Remote. 

3) Switch previously in Remote, stays in Remote. 

4) Switch previously in Remote, switched to Local. 

The interrupt structure and program flow were changed to cover all of the 

possible scenarios. Figure 4-3 shows a block diagram of the modified program flow 

allowing for L/R switch operation. The code is enclosed as a portion of Appendix B. 

On initial power-up, the program initializes the microprocessor and then checks 

the position of the L/R switch. If in Remote, the program functions exactly as it did 

before. It waits for an interrupt 3 from the PC, continues the initialization process, and 

waits for phase interrupts. If the switch was in Local when checked, the program jumps 

to a routine that loads the default table into memory and then continues the program, 

waiting for interrupts. When an interrupt is received, if it is a phase interrupt (i.e. intO), 

the program runs the appropriate control algorithm encoded in the interrupt subroutine 

as before. Only if the interrupt is from the internal timer does the code change again. 
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Figure 4-3 Program Flow with Local/Remote Switch 

When an interrupt is received from the internal timer, the timer 1 subroutine 

takes over. First, it reads the previous switch position from memory then gets the 

current switch position. Zero (0) is used for remote and one (1) for Local mode. From 
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there it branches to the appropriate section based on current switch position. Once in 

the appropriate section of code, either Local or Remote, it compares the current switch 

position with the previous switch position to determine which of the four (4) run-time 

scenarios the system is in. The bottom of Figure 4-3 shows a brief synopsis of what is 

done for each of the four (4) cases. If in Local and previously in Local, the program 

updates Vref by reading in the front panel voltage, initiates a ramp-up function if Vref 

changed by more than 10 volts, stores the new Vref and returns from interrupt. If in 

Local and previously was in Remote, the program branches to the cmd 0 subroutine and 

shuts down the system. It then starts back up in Local. If in Remote and previously in 

Remote, the program merely returns from interrupt. Finally, if in Remote and 

previously in Local, the program branches to cmd 0 again to shut down the system and 

restarts waiting for an interrupt 3 from the PC to run in Remote mode. By using the 

TMS320C30's internal timer 1 to generate interrupts to check L/R switch position 

throughout operation of the system and then changing the interrupt structure to look for 

this interrupt, Local/Remote switch operation was encoded into the Universal 

Controller code. The only modification left to add for this thesis research involved 

encoding a Master/Slave algorithm for parallel operation of the buck choppers. 

D.        MASTER/SLAVE PARALLELING 

1. Theory 

The final requirement from NSWC was to investigate and develop a paralleling 

algorithm that did not require droop. NSWC personnel wanted to be able to connect 

two (2) 100 kW units together in parallel to create a single 200 kW unit. Reference 3 
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contains an algorithm for paralleling two (2) buck choppers based on decreasing the 

reference voltage specified by a unit as the unit output current increases (droop). The 

droop method worked but wasn't accurate enough for the 200 kW parallel application. 

Personnel at NSWC wanted current sharing accuracy greater than that attainable 

through the droop method and wanted to eliminate the droop or "sag" produced in the 

voltage as load increased. To correct this problem, a Master/Slave control algorithm was 

developed. 

The basic premise behind the Master/Slave algorithm was to use a modified 

multi-loop feedback with a steady-state DC term, a Proportional plus Integral (PI) 

controller on the voltage, and a Proportional term on the current to calculate a duty 

cycle for the Master buck chopper. Input and output voltage can be established at one 

node because the buck choppers are in parallel. 

Kj = V»* (4-3) 

K»IA = Ku,a (4-4) 

However, the individual inductor currents must be summed and the individual 

output currents must be summed to establish base inductor and output currents. 

iL=h\+h* (4-5) 

loul   =loul\ ■*"'o»/2 (4-6) 

The Slave buck chopper duty cycle then mimics the Master's. An Integral term is 

added to remove current error between the Master and the Slave, and a proportional 

term is added to maintain stability. Equations (4-7) and (4-8) show the control equations 

implemented using the Master/Slave scheme. 
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Dmasler = Dss -K{Vol -Vref)-hn \(VoX -VKf)dt-h{(iLl + /„)-(/., +i02)}      (4-7) 

Dslme = Dmaster + k J(zol - io2 )dt - kp (IO1 - io2) (4-8) 

where, 

^master= Master Buck duty cycle       Dss = steady-state duty cycle 

hv = voltage gain Vol = voltage out from Buck one 

Vre, = reference voltage hn = voltage integrator gain 

hj = current gain iLl = Buck one inductor current 

iL2 = Buck two inductor current       io] = Buck one output current 

io2 = Buck two output current kp = proportional gain 

Dslave = Slave Buck duty cycle k = current integrator gain 

2. Application 

To implement the Master/Slave algorithm as efficiently as possible, much of the 

previous control code and interrupt structure was retained. Much of the code was 

written by Mr. Roger Cooley, an engineer for NSWC in Annapolis MD, with 

modifications made at Naval Postgraduate School to allow testing on the 20 kW units in 

the Power Systems Laboratory. Figure 4-4 documents the program flow for controlling 

two (2) buck choppers.[Ref. 3] The two bucks are controlled by the phase interrupts 

routed through PLD A and PLD B. The interrupts occur 180 degrees out of phase, or 
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every 25 msec, allowing the Universal Controller to monitor and control one (1) buck 

chopper at a time. 

PLD A interrupt 
routine PLD A wait for interrupt PLDB 

PLD B interrupt 
routine 

sample voltages 
and currents, load 
previous Vd2fn-1] 

and Vdint2[n-1] 

CALL mode 10 
call 

return 

load duty cycle 
into C/T3's 
counter(2) 

register 

calculate duty 
cycle 

sample voltages 
and currents, load 
previous Vd1[n-1] 
and Vdint1[n-1] 

call 

return 

check duty clycle 
for proper range 

CALL model 0 

load duty cycle 
into C/T2's 

counter(2) register 

store Vd2[n] and 
Vdint2[nJ 

clear interrupt 
-►   return from interrupt 

store Vd1[n) and 
Vdint1[n] 

clear interrupt 

Figure 4-4 Program Flow for Dual Buck Chopper Operation [Ref. 3] 

The actual designation of which buck would be the Master and which would be 

the Slave is purely arbitrary. Interrupt subroutine 0 was modified to control the Slave 

and interrupt subroutine 1 was modified for the Master. The actual encoding of the 

algorithm, the integration etc., was performed as it was in Reference 3. The program 

flow was changed as illustrated in by Figure 4-5. 
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Figure 4-5 Master/Slave Modified Program Flow 

3. Findings 

The Master/Slave control algorithm performed satisfactorily on the 20 kW buck 

chopper units in the Power Systems Laboratory, Room 100A in Bullard Hall. 

However, when tested on the 100 kW units at NSWC a problem was discovered. It was 

found that a circulating current due to the 180 degree phase shift was running from one 

buck to the other and was causing an error in the current readings measured during the 
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two (2) different phase interrupt subroutines. As the total load current increased, this 

differential current also increased and disrupted the proper current sharing desired by the 

two (2) units. Mr. Roger Cooley changed the program to read all values and perform all 

duty cycle calculations for both the Master and the Slave buck choppers during one phase 

interrupt. This "zero phase difference" design and code improved the performance of the 

Master/Slave algorithm. This code is also listed in Appendix B. 

Thus far, all the programs for the control algorithms run by the Universal 

Controller have been written in assembly language. These programs are quite lengthy 

and complex. A high-level language, such as C, would increase readability of the code 

and reduce the time required for other researchers to understand the program operation. 

The next phase of this research dealt with investigating the use of C language programs 

for the Universal Controller. 
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V. C PROGRAMMING ISSUES 

A.       INTRODUCTION 

There are two primary reasons that the C programming language was chosen to 

implement the control algorithms for the Universal Controller. First, the C language, 

being a high-level language, is more compact and more readable than assembly language. 

Closed-loop control algorithms with PI controllers use equations that involve relatively 

complex mathematical computations. The assembly code used to implement these 

equations is also complex and oftentimes difficult to decipher. Several lines of assembly 

code are required to do mathematical operations performed by a single line of C code. 

The second reason to use C was a matter of convenience. 

An ANSI C compiler is supplied with the TMS320C30 microprocessor. This is a 

full-featured optimizing compiler that translates ANSI C programs into assembly 

language source code. [Ref. 9] The compiler allows for the interlacing of assembly 

language instructions into C code and also allows assembly modules to call C modules 

and vice versa. Implementing C code was going to be done in steps in order to provide a 

measure of testability on existing systems. 

The current assembly code is quite extensive. To prevent 'reinventing the wheel,' 

the plan was to write only the control algorithm for the buck chopper in C code, leaving 

as much of the remaining code intact as possible. This would save a significant amount 

of time in coding because the majority of the existing program used for initializing the 

system could be used as an assembly module that called the control algorithm in C. The 

39 



new C code control algorithm could be compared to the already tested assembly 

language one (the buck chopper closed-loop control algorithm in Reference 3) to ensure 

operability and yet provide the flexibility desired for future modifications. Then, once 

the code was tested and working on the buck chopper system in the Power Systems Lab, 

the closed-loop algorithm for the ARCP inverter would be written in C. When 

completed, it would be inserted into the existing program that runs the inverter in open- 

loop mode. This approach would avoid the need to write complicated assembly code for 

the ARCP closed-loop algorithm and provide a readable, modifiable closed-loop 

algorithm. To write C modules that could 'talk' to the existing assembly code, several 

requirements had to be met. 

B.       C INTERFACE REQUIREMENTS 

The TMS320C30 supports interlacing assembly language and C code with its 

onboard C compiler. It facilitates the writing of modules both in C and assembly 

language, compiling them both in a single step, and linking them together to form one 

executable object code. The two types of code will work together as long as some very 

specific rules are followed. These rules are outlined in Reference 9 (pages 4-10 through 4- 

25) and deal with variable naming and module calling conventions as well as proper 

register usage and parameter passing schemes used by the C compiler. 

Assembly code modules can call C modules as long as the variables used by the C 

compiler are prefaced with an underscore (J in the assembly code. For example, a 

variable used by C code called newcount needs to be listed as _newcount in the assembly 

language code and defined in the .dss section of the source code. This rule applies to all 

constants, variables, and module names called by the C code. This is because the C 
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compiler automatically prefaces all variable names called by a C function with an 

underscore (J, so for the two codes to work together, this convention must be followed. 

This naming convention was easily complied with by simply changing variable 

names in the assembly code. If any of the variables were overlooked, it became evident 

during the linking process when "unknown variable" errors surfaced. Further editing 

then allowed for error-free compiling and linking. The second requirement for 

interfacing code, the register usage/variable passing convention, proved more difficult to 

implement. 

C.       PROBLEMS WITH IMPLEMENTATION IN EXISTING CODE 

In order for C code modules and assembly modules to communicate, strict 

register conventions must be followed [Ref. 9]. Table 5-1 summarizes the C compiler's 

register use and preservation conventions. 

Register Use by Compiler Preserved by Call 
RO Scalar Return Values No 

R1-R3 Integer and Floating Point 
Expressions 

No 

R4-R5 Integer Register Variables Yes 
R6-R7 Floating Point Register 

Variables 
Yes 

AR0-AR2 Pointer Expressions No 
AR3 Frame Pointer Yes 

AR4-AR7 Pointer Register Variables Yes 
IR0-IR1 Extended Frame Offsets No 

SP Stack Pointer Yes 
RC, RS, RE Block Copy No 

Table 5-1 Register Use and Preservation Conventions [Ref. 9]] 

This table shows the convention that must be followed when interfacing assembly 

language modules into C code. According to Reference 9, the called function is 
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responsible for preserving the contents of any used registers. In other words, when C 

code calls an assembly language function, the called assembly language function is 

responsible for saving and restoring any registers it modifies. Reference 9 further states 

that the C compiler must be free to modify registers as needed to accomplish program 

requirements which means that the compiler will choose which registers to save and 

restore based on Table 5-1. This issue is at the heart of the programming dilemma. 

Instead of inserting assembly functions into C code, the previously stated 

programming plan intended to insert C code functions into an existing assembly 

language program. The problem this created is explained shortly. To further aggravate 

the situation, the register convention of the assembly code does NOT follow that stated 

by Reference 9. For example, C code uses AR3 as the frame pointer for the program 

code, but AR3 is used as a pointer to scratch pad memory and not the current working 

frame in the assembly code. Also, the assembly code uses general registers R0-R7 for all 

types of uses not just those specified by Table 5-1. 

The problems created by inserting C code into assembly language programs that 

do not follow the stated register convention stem from the fact that the C programming 

language was designed to operate independently of system architecture. [Ref. 12] The 

compiler chooses which registers to assign values to, often based on some type of least 

cost algorithm. The compiler's algorithm decides which registers to save and restore at 

the time the program is compiled. The C language does not have provisions for 

mandating which registers are stored and which are not. This means that the calling 

assembly program would know which registers the C module would save and restore 

based on Table 5-1 but not which registers the C module would use or modify. 
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The first attempt at calling a C function from the assembly code failed because of 

this problem. Running the program on the TMS320C30 simulator showed an extensive 

amount of data that the assembly code was storing in registers for later use was being 

over written by the C code. To try and work around this register saving problem, the 

code was modified so that the calling assembly function saved all the registers before 

calling the C module and restored them after the return from the C module. This 

created a problem with the passing of variables from assembly to C and back again. 

When all the registers were saved and restored each time a C module was called, 

the parameter passing ability from assembly to C was lost. In order for the C code to use 

any values with which to make any calculations, the values first had to be saved in 

memory locations accessible to the C module, upon which they could then be modified 

by the C code, and finally saved back in memory prior to returning to the assembly 

code. This complex scheme of saving all parameters in memory, then saving all registers 

on the stack prior to calling C code, then restoring all registers from the stack, and finally 

changing those values modified in memory proved more complex than just using the 

original assembly code. When this code was run on the simulator, data was still being 

lost due to a memory issue caused by the hardware. 

Some of the values needed by the C code had to be read from the A/D converters 

on the Universal Controller. As stated earlier, these A/D converters have memory 

locations assigned to them and conversions are initiated by reading these locations. 

However, the memory map used by the TMS320C30 and therefore used by the compiler 

identified these locations as illegal memory locations and would not allow C memory 
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pointers to be assigned to them. In order to initiate conversions of the required input 

data, the microprocessor had to be forced to read these locations with assembly code. 

After several weeks of trying to work around the register saving problem and the 

variable passing problem, it was decided to abandon the C code. The final program 

written in assembly language that called C modules ended up longer and more complex 

than the original assembly code. The final program still lost register information that 

prevented it from running properly when switching from assembly code to the C 

environment and back again. It was decided the assembly language program would have 

to be rewritten to allow the interface with C code modules. Extensive changes in the use 

of the registers by the assembly code would have to be made. The time required to do 

this proved too great for this thesis research. 

Another option would be to write the entire program in C. This would require 

extensive research of the TMS320C30's online C run-time libraries and a thorough 

understanding of the C programming language. Then C modules could be written to 

initialize the microprocessor, provide the required interrupt structure, and initialize the 

Universal Controller counter/timers as needed for control algorithm implementation. 

This also proved too time consuming for this research effort. The decision was made to 

implement the closed-loop ARCP inverter algorithm in assembly language 

44 



VI. ARCP CONTROL 

A.       BASIC ARCP INVERTER OPERATION 

The topology and operation of an Auxiliary Resonant Commutated Pole (ARCP) 

inverter is described in Reference 13. An operational unit was designed by individuals at 

the Applied Research Laboratory, Penn State University and delivered to the Power 

Systems Laboratory at NPS. It is designed to convert DC voltage into three-phase (3((») 

AC using auxiliary semiconductor devices to implement soft switching. Below is a 

circuit block diagram of one phase of the ARCP inverter. 
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Figure 6-1 ARCP Inverter Circuit Block Diagram [Ref. 14] 

The inverter has two primary switches and two auxiliary switches for each phase. The 

inverter operates by applying a changing control signal to the gates of these electronic 

switches. Each phase has two main drive circuits and two auxiliary switch drive circuits. 

Control signals from the Universal Controller act as inputs to the main drive circuits via 
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optical links. An inner control loop on each phase senses the direction of current flow 

and controls the operation of the auxiliary switches. [Ref. 13] During half the cycle, the 

pump drive circuit turns on the lower auxiliary switch and the inverter sources current. 

During the other half cycle, the sink pump circuit is operating the upper auxiliary switch 

and the inverter is a current sink. Onboard controls, which may be overridden, dictate 

the firing of the auxiliary devices. If the auxiliary device controls are not overridden, 

control of the unit can be accomplished by merely controlling the signal sent to the six 

(6) main electronic switches and will be discussed below. 

B.        OPEN-LOOP CONTROL 

The open-loop control program provided by NSWC initializes the Universal 

Controller's counter/timers the same way it did for the buck choppers only with 120 

degree displacement between phases. This phase difference is created in part by offsetting 

the phase interrupts that are used to calculate the control signal duty cycles. The code 

that actually performs this function can be found in the init_swct subroutine listed in 

Appendix C. 

46 



switching 
frequency 
timer C/T1 

Counter 
0 

Counter 
1 

-tms_swp !► < tms_swp 1» -4 tms_swp 1» —• PLDA 

Counter 
2 

tms_swp_120 
4 tms_swp 1 ► ■4 tjns_swp 1« 

v 
tms swp_120 

*—^ ► -4 tms_swp 4 trns_swp 

PLDB 

PLDC   - 

C30 

[intoj |intl| [into) [_init2_J [intl J [intoj |int2_] 

Figure 6-2 Three-Phase Interrupt Initialization [Ref. 3] 

The switching period count is calculated from the switching frequency entered from the 

host PC and loaded into one of the switching frequency timers. This same count is then 

loaded into the next phase counter after being delayed by 2/3 of the period and into the 

last counter after another similar delay. This ultimately produces a 120 degree difference 

between phase interrupts. 

The duty cycle count for the primary switches is based on sine/triangle pulse- 

width-modulation (PWM). In PWM, a sine wave at the desired output frequency of the 

inverter is superimposed on a fixed-amplitude triangular wave at the desired switching 

frequency of the inverter. Each phase will have a similar sinusoidal control signal with 

the respective signals 120 degrees out of phase. When the sine wave is greater than the 

triangle waveform, the upper switch for the given inverter leg is gated. When the sine 

wave is less than the triangle waveform, the lower switch is gated. This creates a voltage 

across the lower switch as illustrated in Figure 6-3. The pattern basically may be viewed 

as a varying duty cycle applied to the devices in the inverter leg. The amplitude of the 
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sinusoidal control signal directly dictates the amplitude of the resulting phase voltage. 

Again, the switching period of the control signal is determined by the switching 

frequency entered from the host PC. 

time-» 

V, dc 

o 
> 

0    -I       U 

time-* 

Figure 6-3 Sine/Triangle Pulse-Width Modulation [Ref. 2] 

Figure 6-3 shows that as the amplitude of the sine wave approaches its maximum 

value, the duty cycle of the primary switch approaches its maximum. When the sine 

wave is at a zero value, the duty cycle is at 50% and decreases to a minimum at the 

maximum negative value of the sine wave. Equation (6-1) shows the assembly language 

formula that actually implements this type of modulation and calculates the duty count. 
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duty count = tms_ tb* Rl + tms_ ta (6-1) 

where 

R7 = value read from a sine-wave lookup table 

tms_ta = sweep period/2 

tmsjb = {sweep period - 2*(dead time)}/2. 

Using ta and tb in this manner has the affect of shifting the sine wave output up so the 

minimum is at or near zero. This is required for implementation because it is impossible 

to load a negative count or have a negative duty cycle. Dead time is used to ensure 

proper switch operation. Dead time usually refers to the time between turning the top 

switch off and the lower switch on. Both switches conducting at the same time would 

cause catastrophic failure of the unit. The ARCP inverter used in this research has 

circuitry onboard that controls this situation. The dead time referred to in tms_tb is used 

to prevent the duty cycle limits of 5% to 95% from being exceeded. Sine theta is 

determined by the use of a look-up table loaded into scratch pad memory and by using 

the circular addressing mode of the microprocessor. A detailed explanation of circular 

addressing can be found in Reference 8. Below is an example of an instruction that uses 

circular addressing. 

LDF...*AR7+ + (IR1)%,R7 

Basically, an auxiliary register is used as a pointer to the look-up table and an 

index register is used as a step size index. The step size tells the pointer how far to step 

or index after reading the current value of the table. In this case, the value of the sine 

table that pointer AR7 is pointing to is loaded into R7 then the pointer is indexed by the 
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amount in IR1. If the end of the table is reached, the pointer circles around and starts at 

the beginning of the table again. 

The three phases are kept 120 degrees apart by using three (3) different pointers, 

one for each phase, and a double circular addressing scheme for the Phase B and C 

pointers that keeps them tied 120 degrees out of phase with the Phase A pointer. Below 

is the code for the double circular addressing scheme used for one of the Phase B or C 

interrupts. The only difference between the Phase B and Phase C scheme is the value of 

IR1. For Phase B it is equivalent to 120 degree displacement and for Phase C it provides 

a 240 degree displacement. 

LDI        AR7,AR6 
LDF        *AR6++(IR1)%,R7 
LDF        *AR6++(IR1)%,R7 

Recall from above that AR7 is the Phase A pointer to the sine table. The first 

line of code copies this pointer to AR6 so that when indexing is done, AR7 is not 

changed. AR7 should only increment during the Phase A interrupt. Line one of the 

code prevents AR7 from indexing during the Phase B or Phase C interrupt. The next 

line is a regular circular addressing instruction. It loads R7 with the value pointed to by 

AR6 which in this case equals the current Phase A sine value. AR6 is then incremented 

the appropriate 120 or 240 degrees. The circular addressing instruction is then used again 

to load the desired sine table value with the proper phase displacement into R7 for use in 

Equation 6-1. This double circular scheme is what allows the duty count for each of the 

three phases to be calculated during different interrupt subroutines in the program yet 

remain exactly 120 degrees apart. 
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Finally, using Equation 6-1, the new duty count is calculated for each phase and 

loaded in the corresponding counter/timers. This produces the required modulation 

signal which is then exported to the primary switches providing open-loop operation. 

Further details about open-loop operation of the ARCP can be found in Chapter 5 of 

Reference 3. The next step was to close the loop on the control algorithm. 

C.       CLOSED-LOOP CONTROL 

1. Theory 

Closed-loop control, as mentioned earlier, is a method of controlling a system 

that uses a portion of the output fed back to modify system operation. This is done to 

reduce or eliminate transients and steady state inaccuracies caused by a changing load or 

changing inputs. Closed-loop control can be accomplished by using either a current 

control mode or a voltage control mode. The current control mode was selected in this 

case because the ARCP inverter already has sensors in place that provide scaled 

measurements of the system currents. The current control mode allows the inherent 

limiting of the current flowing through the semiconductor switches. 

Control signals for the ARCP inverter can be established by regulating either 

stationary reference frame quantities or synchronous reference frame quantities. As 

discussed in Reference 2, using commanded quantities in the synchronous reference 

frame are preferred over the stationary reference frame because the steady-state 

commanded values are DC levels in the synchronous reference frame. In other words, 

when operating in the synchronous reference frame and in a steady state (no 

perturbations present), the error term produced by a PI controller will be zero. The 

annotation for the control algorithm is shown in Table 6-1. 
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Superscript 's' stationary reference frame quantities 

Superscript V synchronous reference frame quantities 

Subscripts 'abc' actual phase quantities 

Subscripts 'qd' transformed quantities 

Superscript '*' commanded or reference quantity 

Table 6-1 Closed-Loop Control Algorithm Annotation 

The first step of closed-loop control was to sample two (2) phase currents, ia and 

ib. This.will exploit the fact that for a three-wire wye-connected AC load, the sum of 

the three instantaneous phase currents is zero. The two (2) phase currents were then 

transformed into the synchronous reference frame. To make this transformation easier 

to follow, it was performed in steps. First, the measured quantities were transformed 

into the stationary reference frame using the following diffeomorphic relationship: 

1 0 
V3       2V3 (6-2) 

Once in the stationary reference frame, the following transformation is applied, 

placing the quantities into the synchronous reference frame. 

cos(0e[n])   -sin(0e[n])" 

sin(6>[n])     cos(0e[n])_ 
"tfnf 

(6-3) 

Here, 6e is the electrical angle of the measured quantities. The values of sin(öe) 

and cos(0e) are found using the sine look-up table described in the previous section. As 

mentioned then, a pointer was set for the sine and double circular addressing was used 

52 



for the cosine as before. Once iq and ied are calculated, they are compared to 

commanded values entered from the host PC, z'j'and id. This produced i   and idd as 

shown by Equation (6-4) and (6-5). 

ia,d= irf*[n]-/rf[n] 

(64) 

(6-5) 

The values iqq and idd are next applied to a PI controller to calculate control 

voltages, VqP1 and VdPJ. The PI controller equations are given as follows: 

VlM = Kpq(iqq) + Kiqjiqqdt (6-6) 

VlM = Kpd{idd) + Kid\idddt (6-7) 

The control voltages are now inverse transformed to the stationary reference 

frame using the following: 

KM cos(0e[n])     sin(0e[n])' 

-sin(öe[n])   cos(öe[n]) 
W/H' 
V<UnU 

(6-8) 

These stationary reference frame control voltages, Vq
s
PI and Vd PI, are then 

converted to the three different phase control voltages or 'abc' quantities. 

V     = Vs v
a,PI vq,PI 

V3. V     =-—Vs   --—V5 
" k Til » n DT » , 'b,PI 'q,PI d,PI 

V     = -V     - V v c,PI v a,PI       v b,PI 

(6-9) 

(6-10) 

(6-11) 

Finally, the phase control voltages are used to calculate the new duty counts 

needed to produce the desired three-phase (3(|)) AC voltages. The equations for 
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calculating duty count are listed below. This is the same method used in the open-loop 

operation (Equation 6-1) except the phase control voltages are used in place of tb. The 

new duty counts are then loaded into the appropriate counter/timers to produce the 

control signals sent to the ARCP inverter. 

dutycounta = V^P[ * sin 6+tms_ ta (6-12) 

duty count b = Vb PI * sin 6+tms_ ta (6-13) 

dutycountc = Vc PI * sin 6+tms_ ta (6-14) 

2. Application 

The code used to implement the closed-loop control algorithm is enclosed as 

interrupt subroutine 0 of Appendix C. Many of the techniques used in previous 

applications were used in this code. The same trapezoidal integration scheme was used 

for calculating the integrals needed by the PI controller and circular addressing with a 

sine wave look-up table was used for angle calculations. One important difference to 

note is that only one interrupt was needed for closed-loop control instead of the three 

used for open-loop operation. This involved making a slight change to the interrupt 

structure. Interrupt Subroutines 1 and 2 were completely eliminated so as to not disrupt 

operation of the now longer Interrupt Subroutine 0. The 120 degree difference between 

phases is maintained by sampling the currents of two phases and then using those two 

samples to calculate what all three duty counts should be when separated by the proper 

phase difference. The ARCP code, in its entirety, is enclosed as Appendix C. 
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VII. CONCLUSIONS 

A.        SUMMARY OF RESEARCH WORK 

The PEBB Universal Controller is a digital controller designed to handle the 

extensive I/O requirements needed to implement closed-loop control of buck chopper 

converters and ARCP inverters. It provides great flexibility and is a valuable tool in the 

Navy's efforts to implement a DC ZEDS scheme. The focus of this research was to 

expand the operational capabilities of the buck chopper converter control algorithm and 

to implement closed-loop control of the ARCP inverter. 

In Chapter II, the PEBB Universal Controller operation and architecture were 

investigated. The exceptional I/O capability of the Universal Controller was discussed as 

was the architecture of the CPU board. Basic program operation was outlined in order 

to set the stage for subsequent modifications. The Texas Instrument TMS320C30 

microprocessor was discussed in Chapter HL The architecture, powerful instruction set, 

and paralleling hardware give the microprocessor exceptional speed and the ability to 

handle the tasking of the Universal Controller. Some of this tasking was covered in 

Chapter IV. NSWC personnel specified additional software features that had to be 

incorporated in the assembly language program governing the operation of the buck 

choppers. In Chapter IV the over-current, under-voltage, and over-temperature 

protection schemes were introduced and added to the control code. This chapter also 

covered modifications needed to provide for Local/Remote switch operation as well as 

encoding a Master/Slave paralleling algorithm. Improving the readability of the control 
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algorithms was addressed in Chapter V together with assessing the possibility of using C 

code. The several problems that were associated with trying to inject C modules into the 

assembly code were discussed. Finally, Chapter VI covered the control of the ARCP 

inverter. Basic open-loop operation was discussed and one closed-loop control algorithm 

was described and encoded. 

B. NOTABLE CONCLUSIONS 

The Universal Controller is very flexible. Modifications to the control 

algorithms can be made but the assembly language program is quite lengthy and 

complex". With no user's manual and little documentation available, a significant amount 

of time is required to understand the code well enough to make changes to the control 

algorithms. C code algorithms would be easier to read and modify but extensive rework 

of the existing program would be required to allow the interlacing of C code modules 

with the assembly code. Closed-loop control of the ARCP is achievable with the 

Universal Controller allowing fast, accurate response to system perturbations. 

C. RECOMMENDATIONS FOR FUTURE WORK 

Further work in the area of paralleling buck choppers is needed. The problems 

associated with the original 'droop method' and the differential cross current in the 

Master/Slave algorithm leave the door open for the development of an algorithm that 

would allow control of multiple bucks in parallel yet be able to ensure proper load 

sharing. Possible areas of investigation include current share wire or frequency injection 

controlling. 

Research needs to be done to refine the closed-loop ARCP inverter algorithm 

including the possible move to a more specialized control card or even a commercial 
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control card that may not be as I/O capable or flexible as the Universal Controller but 

may allow different programming schemes. Another possibility would be to develop a 

new control program scheme that is not interrupt driven and that can be implemented in 

C, C+ +, visual C+ + or some other high-level language or even possibly completely 

rewriting the existing program in C. 

The U.S. Navy is looking for ways to save money and at the same time upgrade 

operational capabilities. DC ZEDS research is one way of meeting these goals. The 

flexibility of the Universal Controller makes it a key component in the DC ZEDS 

system and one worthy of further research and development. 
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APPENDIX A. SOFTWARE ACCESS AND DOS COMMANDS 

A. PROGRAM DEVELOPMENT SOFTWARE TOOLS 

In addition to the assembly programs discussed in this thesis, several software 

programs are required for implementation of this research. Appendix C of Reference 3 

contains a detailed description of several support programs and their use. The 

programs are stored on PCPWR7 in Bullard Hall Room 114 and are installed in 

various computers throughout the Power Systems Laboratory. Reference 3 outlines 

how to install and use the Host PC software and how to install or "burn" code on the 

EPROMS used by the Universal Controller. The Host PC software is written in 

C++ and designed for use in a Windows 3.1 operating environment. The software 

required to install code on the Universal Controller's EPROMs is loaded on 

PCPWR8, also located in Bullard Hall Room 114. This is a DOS-based system. Batch 

files control much of the software on this system; therefore, a working knowledge of 

DOS commands and batch files is required. This Appendix assumes the reader has a 

basic knowledge of computers and the use of Windows but that the reader has had 

little exposure to DOS. 

B. DOS COMMANDS 

DOS is the precursor to Windows as an operating system for computers. 

Unlike Windows with its graphical user interface, DOS relies on a series of commands 

entered at command prompt to govern operation. Below is an example of a DOS 

command prompt: 
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C:\> 

The "C:" refers to which drive is the current working drive and the backslash 

(\) with no other directories after it indicates that the computer is working in the root 

directory. The "C:" drive is usually the computer's hard drive or primary memory 

storage. Commands, usually letters or short words typed from a keyboard, directly 

after the command prompt direct the computer's operations. For the purposes of this 

Appendix, the command prompt is shown with each command discussed. Commands 

entered by the user are in boldface, and are directly related to using the support 

programs required for this thesis. 

After applying power to the computer (PCPWR8), the system "boots-up" and 

the command prompt appears on the screen. To obtain a listing of directories present 

on the C: drive, type dir and press enter. 

C:\>dir 

The screen will scroll through a listing of all files and sub-directories located in 

the root directory. On PCPWR8, the list is too long to fit on the screen. To view the 

list one page at a time, type: 

C:\>dir/p 

This will display the entire listing one page at a time. The files consist of a 

filename followed by an extension. For example, on the file npsbuck.asm, npsbuck is 

the filename and .asm is the extension. DOS filenames are limited to eight (8) 

characters and can be either upper of lower case (DOS is not case sensitive). 

Extensions are used to define the file type. Table A-l lists the DOS extensions most 

used in this thesis work and the meaning of each extension. 
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Extension Meaning 
.asm Assembly language file 

.c C language file 
.obj object file produced by the assembler 
.out output file produced by converting an 

object file into the format needed to 
program EPROMS 

.and command file used to link format 
information to the assembly code for 

inclusion in the object code 
.bat batch file of executable instructions 

<dir> sub-directory 

Table A-l DOS Extensions 

Assembly language code that is to be assembled must have the filename 

extension .asm and C language code that is to be compliled must have the filename 

extension .c. This code may be written using any text editor the user is familiar with 

as long as it is saved with the proper extension. As described in Reference 3, the C 

compiler and the Assembly language assembler are loaded on PCPWR8 in the 

DSPTOOLS sub-directory on drive C. To switch computer operation to this sub- 

directory type: 

C:\>cd dsptools 

The command "cd" stands for change directory and the command prompt will 

change to indicate the new working directory. 

C:\DSPTOOLS > 

The user is now ready to run the batch file, npsbuck.bat, as described in 

Reference 3. 
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C.       BATCH FILES 

Batch files are files that consist of a series of executable DOS commands. To 

run a batch file, the user simply needs to type the name of the file. For example, to 

run the batch file that assembles the file npsbuck.asm, the user must type: 

C:\DSPTOOLS > npsbuck 

As outlined in Reference 3 Appendix C, the input filename is required to be 

npsbuck.asm. A listing of the actual batch file explains why this is the case. To view 

the batch file, the following command is entered at the command prompt: 

C:\DSPTOOLS > type npsbuck.bat 

The batch file will then be displayed on the screen 

asm30 npsbuck.asm -s -1 -q 
lnk30 npsbuck.obj npsbuck.cmd 
hex30 -I npsbuck 

The first command assembles the file named npsbuck.asm. The letters after the 

filename are different options available with the assembler and are defined in Reference 

8. For instance, the -1 tells the assembler to create a listing file and the -q suppresses the 

banner and all progress information during assembly [Ref. 8]. The second command 

links the object file produced by the assembler with the command file named 

npsbuck.cmd. The final command converts the object code into the proper hex format 

necessary to program an EPROM. The specifics of each instruction and their various 

options are described in Reference 8. 
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Batch files are very versatile. They can be written to perform a myriad of 

functions. To edit a batch file, use the DOS command edit. The following is typed at 

the command prompt 

C:\DSPTOOLS > edit npsbuck.bat 

An onscreen editor will appear with the contents of the batch file displayed. 

The file may now be changed as desired. The arrow keys on the keyboard will move 

the cursor. Any command that is present may be changed or any executable DOS 

command can be added to or deleted from the file. For instance, npsbuck.asm, located 

in the first line of the batch file, could be changed to a different filename thus allowing 

different assembly language files to be assembled. 

During the course of this research, it became helpful to write program code on 

a different computer, save the file on a floppy disk, and assemble the code as discussed 

in Reference 3. In DOS, the "a:" drive is usually the floppy disk drive. To access this 

drive, the command "a:" is used. This command can be used in conjunction with other 

commands to add flexibility to the batch file. For instance, if line one of npsbuck.bat 

is changed to read: 

asm30 arnpsbuck.asm -c -1 -q 

The assembler will now assemble the program npsbuck.asm that is located on 

the floppy disk in the a: drive. Another example using the "a:" command is to add the 

line: 

copy npsbuck.out a: 

to the bottom of the batch file npsbuck.bat. This would copy the output file created 

by the assembler/linker to the floppy disk located in drive a:. 
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The "a:" command can be used outside of a batch file as well. 

C:\DSPTOOLS > copy arnpsbuck.asm 

This command will copy the file named npsbuck.asm from the floppy disk in 

drive a: to the current working sub-directory, dsptools. 

Knowledge of DOS is invaluable for performing research involving the 

Universal Controller. The most helpful commands have been discussed in this 

Appendix. A more thorough explanation of the workings of DOS and DOS 

commands is contained in Reference 17, an MSDOS 6 User's Guide. 
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APPENDIX B. BUCK CHOPPER CONTROL CODE 

*********************************************************** 
* 
* NPS POWER LAB 
* TMS320C30 SSCM CONTROL CODE 
* BY RON HANSON 
* MODIFIED FOR PARALLEL OPERATION 
* BYBOBASHTON   NPS (Theoretical) 
* ROGER COOLEY NSWC (Coding) 
* 

* Single Interupt, Zero phase difference 
* 

* OVER-CURRENT, UNDER-VOLTAGE, OVER-TEMP 
* LOCAL/REMOTE SWITCH OPERATION 
* BY DAVID FLOODEEN 
* 
*********************************************************** 
* 

.title   "BUCK" 

.global init 
; EPROM Config 

.global reset 

.global int0,intl,int2,int3 

.global tintO 

.global isr0,isrl,isr2,isr3 

.global timeO 
; END EPROM 

.global SIN,FPINV,FDIV,divi 

A2Dfltr .macro SRC, MSB 

Takes two 12bit values in: 
b0..bll(LSB)and 
Ö16..27 (MSB) 

of the SRC and converts the two values into 32bit integer format 
Storing the LSB integer in the SRC register and 
Storing the MSB integer in the MSB register 

The arguments should be Registers 

LDI SRC, MSB 
LSH 04H, MSB 
ASH-14H,MSB 
FLOAT MSB 
LSH 14H, SRC 
ASH -14H, SRC 
FLOAT SRC 
.endm 
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=(EPROM)== Point the DP register to page 0 
;=(Boot)== Init DP register 

Clear and enable cache, and disable OVM (1800h) 
Clear all interrupts 
Load peripheral bus memory-mapped reg 

; Init expansion bus control reg 

.text 
init:    NOP ; 

LDI 0,DP ;= 
;=(Boot)LDI 08H,DP 

LDI 00H,ST 
LDI 0000HJE 
LDI @ctrl,AR0 
LDI @xbus,R0 
STI R0,*+AR0(60H) 
LDI @pbus,R0        ; 
STI R0,*+AR0(64H)    ; Init primary bus control reg 
LDI @stck,SP        ; Initialize the stack pointer 
CALL init_ct ; Init counter/timer 
CALL init_values     ; load default value table (L/R_sw) 
LDI @d_output,ARO    ; 
LDI 00FFH,R0        ; 
STI R0,*AR0 ; 
LDI @ct_port,AR0     ; Pointer for counter/timer control register 
LDI @reset_out,RO    ; 
STI R0,*AR0 ; Disable all output 
LDI @ctrl,AR0       ; 

LDI @blkl,AR3       ; Sratch pad memory area 
LDI @dp_mem,AR4     ; Top of dual port memory 
LDI @blkO,AR5       ; Sratch pad memory area 
LDI @sram,AR7       ; Top of the look up table 
LDI @dp_cint,IRO     ; Clear dual port memory interrupt 
LDI *+AR4(IR0),R0    ; 

LDI 000H,R0 ; Clear sram memory 
RPTS 2047 ; 
STI R0,*AR4++(1)     ; 

LDI @dp_mem,AR4     ; Top of dual port memory 
LDI 0000HJF        ; Clear all flags 
LDI 0200H,IE        ; Enable interrupt 9 (internal timer 1) (L/R_sw) 
OR  02000H,ST       ; Global interrupt enable 

begin: NOP 

BR  begin 

NOP 
NOP 
NOP 

* Initialize counter/timer 

Pointer for counter/timer control register init_ct:LDI @ct_port,AR0 
LDI 00ffH,R0 
STI R0,*AR0 ; Disable all counter/timer output 
LDI @ct_swfreg,AR0   ; Pointer for switching frequency timer 1 
LDI 0034H,R0        ; Mode 2 (rate generator), 00110100B 
STI R0,*+AR0(3)     ; 
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LDI 0074H,R0 ;01110100B 
STI R0,*+AR0(3) ; 
LDI 00b4H,R0 ;10110100B 
STI R0,*+AR0(3) ; 
LDI @ct_phasea,ARO   ; Pointer for phase a counter 
LDI 0012H,R0 ; Mode 1 (hardware retriggerable one-shoot),00010010B 
STI R0,*+AR0(3) ; 
LDI 0052H,R0 ; Mode 1, R/W LSB, 0101001 OB 
STI R0,*+AR0(3) ; 
LDI 00b2H,R0 ; Mode 1, R/W LSB & MSB, 1011001 OB 
STI R0,*+AR0(3) ; 
LDI @ct_phasebAR0   ; Pointer for phase b counter 
LDI 0012H,R0 ; Mode 1 (hardware retriggerable), RAV LSB, 00010010B 
STI R0,*+AR0(3) ; 
LDI 0052H,RO ; Mode 1, RAV LSB, 0101001 OB 
STI R0,*+AR0(3) ; 
LDI 00b2H,R0 ; Mode 1, R/W LSB & MSB, 10110010B 
STI R0,*+AR0(3) ; 
LDI @ct_phasec,AR0   ; Pointer for phase c counter 
LDI 0012H,R0 ; Mode 1 (hardware retriggerable), RAV LSB, 00010010B 
STI R0,*+AR0(3) ; 
LDI 0052H,R0 ; Mode 1, RAV LSB, 01010010B 
STI R0,*+AR0(3) ; 
LDI 00b2H,R0 ; Mode 1, RAV LSB & MSB, 10110010B 
STI R0,*+AR0(3) ; 

LDI @ctrl,AR0     ; Pointer for counter/timer control register (L/R_sw) 
LDI @timlprd,R0     ; load internal timerl period (L/R_sw) 
STI R0,*+AR0(38H)   ; (L/R_sw) 
LDI @timlctl,R0     ; init timerl (L/R_sw) 
STI R0,*+AR0(30H)    ; (L/R_sw) 

RETS 
* 

init_values: LDI @oaci,*+AR3(tms_oaci) ;load all front panel values for L/R_sw 
LDI @acv,*+AR3(tms_acv) ;(L/R_sw) 
LDI @bdly,*+AR3(tms_bdly) ;(L/R_sw) 
LDI @btime,*+AR3(tms_btime)     ;(L/R_sw) 
LDI @dci,*+AR3(tms_dci) ;(L/R_sw) 
LDI @odci,*+AR3(tms_odci) ;(L/R_sw) 
LDI @Vref,*+AR3(tms_Vref) ;(L/R_sw) 
LDI @dt,*+AR3(tms_dt) ;(L/R_sw) 
LDI @of,*+AR3(tms_of) ;(L/R_sw) 
LDI @swf,*+AR3(tms_swf) ;(L/R_sw) 
LDI @aci,*+AR3(tms_aci) ;(L/R_sw) 
LDI @blk,*+AR3(tms_blk) ;(L/R_sw) 
LDI @acs,*+AR3(tms_acs) ;(L/R_sw) 
LDI @dcs,*+AR3(tms_dcs) ;(L/R_sw) 
LDI @step,*+AR3(tms_step) ;(L/R_sw) 
LDI @delay,*+AR3(tms_delay)     ;(L/R_sw) 
LDI @kc,*+AR3(rms_kc) ;(L/R_sw) 
LDI @kcb,*+AR3(tms_kcb) ;(L/R_sw) 
LDI @bt,*+AR3(tms_bt) ;(L/R_sw) 
LDI @bi,*+AR3(tms_bi) ;(L/R_sw) 
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LDI @L_R_posit,*+AR3(L_R_posit) ;need to init switch posit 0=remote 
LDI @command,*+AR3(command)     ;(L/R_sw) 
LDI @mode,*+AR#(tms_mode)      ;(L/R_sw) 
RETS 

********read_cmd modified for L/R_sw operation 

readcmd: LDI *+AR3(L_R_posit),R0   ;read switch posit (L/R_sw) 
CMPI 0000H,R0 ;seeifinremote(L/R_sw) 
BEQ   ck_cmd ;if in remote, go to ck_cmd(L/R_sw) 
LDI   *+AR3(command),R0     ;if in local, load command 10 (L/R_sw) 

addr:   LDI   @cmd_ad,Rl ;pointer for command address(L/R_sw) 
ADDI R1,R0 ;(L/R_sw) 
BNZ  R0 ;(L/R_sw) 

stopinit: RETS ;(L/R_sw) 

ck_cmd: LDI   *+AR4(l),R0     ; Check command from the PC (L/R_sw) 
AND  00FFH,R0       ; Clear all other bits(L/R_sw) 
CMPI 01EH,R0        ;(L/R_sw) 
BHS   stopinit       ; Ignore command if command >= 30(L/R_sw) 
BR addr ;(L/R_sw) 

****************** 

startcmd: BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdlO 
BR cmdlO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 

**************** 

Off 
Test Mode 
AC to DC control 
Motor Control - Forward 
Motor Control - Reverse 
Actuator Control - Open 
Actuator Control - Close 
Actuator Control - Open 
Actuator Control - Close 
DC to DC Boost 
DC to DC Buck 

; Stepx 
; AC output voltage 
; Boost time 
; Set current boost limit 
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BR cmdO ; 
BR  cmdO ; 
RETS 

* Turning off ARCP 
* 

cmdO:    LDI 08H,IE     ; Disable interrupts 0,1,2 
LDI @ct_port,AR0    ; Pointer for counter/timer control register 
LDI @clear_main,R0   ; 
STI R0,*AR0 ; Disable all output 
STI R0,*+AR3(tms_outputb); 
LDI 030H,R0 ; 

wait20:   SUBI01H,R0 ; 
BNZ wait20 ; 
LDI @reset_out,R0   ; 
STI R0,*AR0 ; Disable all counter/timer output 
CALL init_ct ; 
LDI 00H,R0 ; 
STI R0,*+AR4(1)      ; 
LDI @dp_int,IR0     ; 
STI R0,*+AR4(IR0)   ; 
LDI @d_output,AR0    ; 
LDI 0FFFH,R0        ; 
STI R0,*AR0 ; 
LDI @ct_port,AR0    ; Pointer for counter/timer control register 
LDI @reset_out,R0   ; 
STI R0,*AR0 ; Disable all output 
RETS ; 

* DC to DC Buck Converter 
* 

cmdlO:LDI  08H,IE 
LDI  @ct_port,AR0 
LDI  @clear_main,R0 
STI  R0,*AR0 
LDI  030H,R0 

wait210: SUBI 01H,R0 ; 
BNZ  wait210 
LDI  @reset_out,R0 
STI   R0,*AR0 
CALL init_ct 
CALL save_serup 
CALL init_swct 
LDI  *+AR3(tms_swp),R0 
FLOAT R0 
LDF  @max,Rl 
MPYF R0,R1 ; 
STF  R1,*+AR3(UMAX)     : 
MPYF @min,R0 ; 
STF   R0,*+AR3(UMIN)     ; 
LDI  *+AR3(tms_Vref),R0 ; 
FLOAT R0 ; 
RND  R0 ; 
STF  R0,*+AR3(tms_Vref); 

; Disable interrupts 0,1,2 
; Pointer for counter/timer control register 

; Disable all output 

; Disable all counter/timer output 

; Save data in 32-bit format 
; Init switching frequency counters 
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; *** Calc limit for Voltage error integrator *** 
LDI   *+AR3(tms_aci),Rl  ; 
FLOAT Rl ; 

MPYF @en2, Rl ; scale input to percent 
MPYF 5.0, Rl ; 
RND       Rl ; 

STF  Rl,*+AR3(rms_aci) ; 
; *** Calc limit for Current error integrator *** 

LDI   *+AR3(tms_dci),Rl   ; 
FLOAT Rl ; 

MPYF @en2, Rl ; scale input to percent 
RND        Rl ; 

STF  Rl,*+AR3(tms_dci)   ; 
* 

* start up ramp function 
* 

LDI   *+AR3(tms_step),R0; 
STI   R0,*+AR3(stopfreq); 
LDI   000H,R0        ; 
STI   R0,*+AR3(tms_stepx); Startup 
LDI   *+AR3(stopfreq),R0; 
FLOAT R0 ; 
CALL FPINV ; 
MPYF *+AR3(tms_Vref),R0; 
RND   R0 ; 
STF  R0,*+AR3(vperfreq); 
LDF   0000,RO        ; 
STF  R0,*+AR3(tms_Vref); 
LDI   @ctrl,AR0      ; Load peripheral bus memory-mapped reg 
LDI   *+AR3(tms_delay),R0; 
MPYI 064H,R0 ; 
STI   R0,*+AR0(28H)   ; 
LDI   @tim0ctl,R0     ; 
STI   R0,*+AR0(20H)   ; In it internal timer 0 

* 

* voltage and current scaling 
* 

LDI   *+AR3(tms_dcs),R0       ; 
FLOAT R0 ; 
MPYF @invllbits,R0 ; 
RND   R0 ; 
STF  R0,*+AR3(tms_dcscale)   ; 
LDI   *+AR3(tms_acs),R0       ; 
FLOAT R0 ; 
MPYF @invllbits,R0 ; 
RND   R0 ; 
STF  R0,*+AR3(rms_acscale)   ; 

* 

* define hi, hn, hv and T/2 
* 

LDI     *+AR3(tms_swf),R0      ; R0 = fsw 
FLOAT  R0 ; 
MPYF   2.0,R0 ;R0 = 2*fsw=2*fsamp 
CALL    FPINV ; R0 = Tswp/2 
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*************************************************** 

; OverCurrent Trip Code 

STF   R0,*+AR3(tau_2)        ; Store T/2 
*************************************************** 

LDI    *+AR3(tms_bi),Rl        ; 
FLOAT  Rl ; 
MPYF   @en4,Rl ; 
MPYF   R0,R1 ; 
RND    Rl ; 
STF    Rl,*+AR3(K_slave)      ; >K*T/2 
LDI    *+AR3(tms_kc),Rl        ; 
FLOAT  Rl ; 
MPYF   @en4,Rl ;hn 
MPYF   R1,R0 ; 
RND    RO ; 
STF    R0,*+AR3(hn) ; > hn*T/2 
LDI    *+AR3(tms_kcb),R0 
FLOAT  RO 
MPYF   @en4,R0 
RND    RO 
STF    R0,*+AR3(hv) ; > hv 
LDI    *+AR3(tms_bt),R0 ; 
FLOAT  RO ; 
MPYF    @en4,R0 ; 

RND    RO ; 
STF    R0,*+AR3(hi) ; > hi 
LDF    0.0,R0 ; 
STF    R0,*+AR3(Vdiffa) ; Initialize Vdiff 
STF    R0,*+AR3(Vd_inta) ; Initialize Vd_int 
STF    R0,*+AR3(Vdiffb) ; Initialize Vdiff 
STF    R0,*+AR3(Vd_intb) ; Initialize Vd_int 

; OverCurrent Trip Code 
STF    R0,*+AR3(io_m_116) ; Initialize io_m_l 16 
STF    R0,*+AR3(io_s_l 16) ; Initialize io_s_l 16 
STF    R0,*+AR3(trip_m) ; Initialize trip_m 
STF    R0,*+AR3(trip_s) ; Initialize trip_s 

************************************************* 

***************************************pjjjjg jjy njijgg Limit to the DAC 

LDF *+AR3(tms_acscale),R0   ; acscale is used as current scalefactor 
CALL FPINV ; Generate scalefactor for DC OC Limit 
LDI *+AR3(tms_odci),Rl       ; Read in DC OverCurrent Limit 
FLOAT Rl 
MPYF Rl, RO ; Scale Threshold Limit Value 
RND RO ; 
FLX RO ; RO = ampstocounts  scalefactor 
XOR mask_dac,RO 
LDI @dac_l,AR0 
STI R0,*AR0 ;Write CurrentLimit to dac_l 
LDI @dac_2,AR0 
STI R0,*AR0 ;write CurrentLimit to dac_2 
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****************************************J^JY) 

LDF   0.0, R0 
STF   RO, *+AR3(d)     ; initialize Master dutycycle 

* 
****************************************** 

LDI  @ct_port,ARO ; Pointer for counter/timer control register 
LDI  00300H,R0 ; 1100000 (disable phase C) 
STI  R0,*AR0 ; Enable all counter/timer output 
STI   R0,*+AR3(tms_outputb) 

;=*=LDI   010bH,IE ; Enable interrupts 0,1,3,8 
LDI  0030bH,IE ; Enable interrupts 0,1,3,8,9 

LDI  01H,RO 
STI  R0,*+AR4(1) 
LDI  @dp_int,IR0 
STI  R0,*+AR4(IR0) 
RETS 

* 

save_setup: LDI tblsize,RC     ; Init loop counter 
RPTB savedp        ; 
LDI   *AR4++(1),R0    ; Start at the top of the dual port memory 
AND  OffH,R0        ; Mask out all higher bits 
LSH  08H,R0 ; Rotate 8 bits to the left 
LDI   *AR4++(1),R1    ;GetLSB 
AND  0ffH,Rl 
OR   R0,R1 

save_dp: STI   R1,*AR3++(1) ; Save 32-bit data in internal RAM 
LDI   @dp_mem,AR4     ; Reset AR4 
LDI   @blkl,AR3       ; Reset AR3 

* 

LDI   *+AR3(tms_swf),Rl; 
* BZ   init      ; Reset if switching frequency is 0 

LDI   @swp_const,R0   ; Determine switching period 
CALL divi ; 
STI  R0,*+AR3(tms_swp); 

**my change to code to have interupt 1/2 way thru cycle 
LDI   02H,R1 ;oldcode: LDI  003H,R1 
CALL divi ; 
ADDI 10H,R0 ; 
STI   R0,*+AR3(tms_swp_120) 
LDI   *+AR3(tms_swp),R0; 
LDI  R0,R1 ; Determine ta 
LSH  -1H,R0 ; 

* LDI   *+AR3(tms_btime),R2; 
* SUBI R2,R0      ; 

STI  R0,*+AR3(tms_ta); 
LDI   *+AR3(tms_dt),R0; Determine tb 
LSH   01H,R0 ; 
SUBI R0,R1 ; 
LSH   -1H,R1 ; 
FLOAT Rl ; 
RND   Rl ; 
STF  Rl,*+AR3(rms_tb); 
LDI   *+AR3(tms_of),R0; Determine stepx 
LDI   *+AR3(tms_blk),Rl; 
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MPYI R1,R0 ; 
*        BZ   init       ; 

LDI   *+AR3(tms_swf),Rl; 
CALL divi ; 
STI  R0,*+AR3(tms_stepx); 
LDI   *+AR3(tms_btime),Rl 
STI  Rl,*+AR3(tms_tboost); 
LDI   *+AR3(tms_oaci),R2; 
FLOAT R2 ; 

MPYF @en6,R2 
STF  R2,*+AR3(tms_oaci);—STF  R2,*+AR3(tms_ilmin); 

RETS ; 
* 

init_swct:LDI @ct_swfreg,ARO   ; Pointer for switching frequency timer 1 
LDI *+AR3(tms_swp),R0; 

LDI *+AR3(tms_swp),Rl; 
STI R0,*+AR0(0)     ; Store LSB of counter 0 

STI Rl ,*+AR0( 1)     ; Store LSB of counter 1 
LSH -08H,R0 ; 

LSH -08H,R1 ; 
STI R0,*+AR0(0)     ; Store MSB of counter 0 
STI R1,*+AR0(1)     ; Store MSB of counter 1 

NOP 
NOP 
NOP 

LDI *+AR3(tms_swp_120),R2; 
checkoutLLDI 0040H,R0        ; 

STI R0,*+AR0(3)     ; Latch command 
LDI *+AR0(l),R0      ; 
AND 000FFH,R0       ; Clear all other higher bits 
LDI *+AR0(l),Rl      ; 
LSH 0008H,R1 ; 
AND 00f00H,Rl        ; 
OR  R1,R0 ; 
CMPI R2,R0 ; 
BGT checkout 1        ; 
LDI *+AR3(tms_swp),R0; 
STI R0,*+AR0(2)     ; Store LSB of counter 2 
LSH -0008H,R0       ; 
STI R0,*+AR0(2)     ; Store MSB of counter 2 

* 

LDI @ct_phasea,ARO   ; Pointer for phase a counter 
LDI *+AR3(tms_btime),Rl ; 
STI R1,*+AR0(0)     ; Store LSB of counter 0 
LDI *+AR3(tms_bdly),Rl ; 
ADDI *+AR3(tms_btime),Rl ; 
STI R1,*+AR0(1)     ; Store LSB of counter 1 
LDI *+AR3(tms_ta),Rl ; 
STI Rl ,*+AR0(2)     ; Store LSB of counter 2 
LSH -08H,R1 ; 
STI R1,*+AR0(2)     ; Store MSB of counter 2 

* 

LDI @ct_phaseb,ARO   ; Pointer for phase b counter 
LDI *+AR3(tms_btime),Rl ; 
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STI R1,*+AR0(0)     ; Store LSB of counter 0 
LDI *+AR3(tms_bdly),Rl ; 
ADDI *+AR3(tms_btime),Rl ; 
STI R1,*+AR0(1)     ; Store LSB of counter 1 
LDI *+AR3(tms_ta),Rl ; 
STI Rl ,*+AR0(2)      ; Store LSB of counter 2 
LSH -08H,R1 ; 
STI R1,*+AR0(2)     ; Store MSB of counter 2 

LDI @ct_phasec,ARO   ; Pointer for phase c counter 
LDI *+AR3(tms_btime),Rl ; 
STI R1,*+AR0(0)      ; Store LSB of counter 0 
LDI *+AR3(tms_bdly),Rl ; 
ADDI *+AR3(tms_btime),Rl ; 
STI R1,*+AR0(1)     ; Store LSB of counter 1 
LDI *+AR3(tms_ta),Rl; 
STI R1,*+AR0(2)     ; Store LSB of counter 2 
LSH -08H,R1 ; 
STI R1,*+AR0(2)     ; Store MSB of counter 2 
LDI   *+AR3(tms_btime),R0; 
STI   R0,*+AR3(tms_tboost); 
RETS 

isr mode: LDI *+AR3(tms_mode),R0     ; 
LDI @mode_ad,Rl     ; 
ADDI R1,R0 > 
BNZ RO J 

RETS 
* 

y 

modecmd: BR   modeO ;Stop 
BR modeO ; Test Mode 
BR modeO ; DC to AC Mode 
BR modeO ; Motor Control Mode - Forward 
BR modeO ; Motor Control Mode - Reverse 
BR modeO ; Actuator Control Mode - Open 
BR modeO ; Actuator Control Mode - Close 
BR modeO ; Linear Actuator Mode - Open 
BR modeO ; Linear Actuator Mode - Close 
BR mode9 ; DC to DC Boost Mode 
BR mode 10 ; DC to DC Buck Mode 
BR modeO ; Stop 
BR 

* 
modeO ;Stop 

modeO:    LDI 08HJE Disable interrupts 0,1,2 
LDI @ct_port,AR0    ; Pointer for counter/timer co 
LDI @clear_main,R0 ; 
STI R0,*AR0 ; Disable all output 
LDI 030RR0 ) 

wait30:   SUBI 01H,R0    ; 
BNZ  wait30 ; 
LDI   @reset_out,R0   ; 
STI  R0,*AR0        ; Disable all counter/timer output 
AND  08H,IF ; Clear all pending interrupts 0,1,2 
LDI   O0H,R0 ; 
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STI  R0,*+AR4(1)    ; 
LDI   @dp_int,IRO    ; 
STI  R0,*+AR4(IR0)   ; 
RETS ; Return 

* 

* test 
* 

mode9: LDI     *+AR3(tms_kc),R7       ; 
RETS ; 

* 

* DC to DC Buck Converter 
* 

modelO:LDF   *+AR3(tms_Vref),R0 ;RO=Vref 
LDF     *+AR3(Vin_inv),Rl ;R1= 1/Vin 
LDF     *+AR3(Vout),R2 ;R2= Vout 
LDF     *+AR3(Vdiff),R3 ;*R3= Vdiff(n-1) 
LDF     *+AR3(iL),R6 ;R6 = iL 
SUBF    *+AR3(iout),R6 ;R6 = iL-iout 
MPYF    *+AR3(hi),R6 ;R6 = hi(iL-iout) 
MPYF3   R0,R1,R4 ;R4= Dss=Vref/Vin 

*s 

STF R4,*+AR3(Dss) 
*e 

SUBF3   R0,R2,R5 ;R5= Vdiff(n) =Vout-Vref 
ADDF   R5,R3 ;*R3= Vdiff(n)+Vdiff(n-1) 
MPYF    *+AR3(hn),R3 ;*R3= Vd_int=KcT/2 [Vdiff(n)+Vdiff(n-1)] 
ADDF    *+AR3(Vd_int),R3       ;*R3= Vd_int(n) = Vd_int +Vd_int(n-1) 

j Limit the Integrator 
LDF  R3.R7 ; R7(temp)=Vd_int(n) 
ABSF R7 ; 
CMPF   *+AR3(tms_aci),R7     ; CMP[abs(Vd_int(n)) - lac] 
BLE    NoLimlO ; Limit reached stop increasing 
LDF    *+AR3(Vd_int),R3      ; R3=Vd_int(old) 

NoLimlO: NOP ; 

LDF      *+AR3(Dss),R4    ;restore Dss to R4 
SUBF    R3,R4 ;R4= D=Dss-Vd_int 
SUBF   R6,R4 ;R4 = Dss - Vd_int - hi(iL-iout) 
LDF     *+AR3(hv),R6       ;R6 = hv 
MPYF   R5,R6 ;R6 = hv(Vout-Vref) 
SUBF   R6,R4   ;R4 = Dss - Vd_int - hi(iL-iout) - hv(Vout-Vref) 

; Limit the duty cycle 
HiLim: CMPF @max,R4 

BLE   LoLim 
LDF   @max,R4 

LoLim: CMPF @min,R4 
BGT   Same 
LDF   @min,R4 

Same: NOP 
; store Master Dutycycle 

STF   R4,*+AR3(d)   ;d = Dss-dl 

LDI    *+AR3(tms_swp),R7 
FLOAT  R7 
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MPYF   R7,R4 
SUBF   R4,R7 

Here R7 = (1 - d) to compensate for the PEBB EPLD inversion 
STF    R7,*+AR3(count) 

FIX  R7 
RETS Return 

= EPROM ONLY 
.sect   "vecs" 

reset    .word init 
intO     .word isrO 
intl     .word isrl 
int2     .word isr2 
int3      .word isr3 

; Named section 
RS- loads address init to PC 
INTO- loads address intO to PC 
INT1- loads address intl to PC 
INT2- loads address int2 to PC 
INT3- loads address int3 to PC 

.space   4 
tintO     .word    timeO 
tintl     .word    timel 

.space   34 
: end EPROM 

; Reserved space 
; Timer 0 interrupt processing 
; Timer 1 interrupt processing 

; Reserved space 

.data 
sram     .word    0080000H      ;=(EPROM)== Beginning of SRAM (init,cmdl) 
;==(BOOT)sram     .word    0084000H      ;==(BOOT)== Beginning of Sin Table 
blkO     .word    0809800H      ; Beginning address of RAM block 0 (init) 
blkl      .word    0809C00H      ; Beginning address of RAM block 1 (init, 

savesetup) 
stck     .word    0809F00H 
Ctrl     .word    0808000H 

; Beginning of stack (init) 
; Pointer for peripheral-bus memory map(init, 

cmdl0,cmdl) 
xbus     .word    0000048H ; Xpansion bus: 2 wait states, extemal(init) 

; RDY not in use (88) 
pbus     .word    0000428H      ; Primary bus : IM bank compare, 1 wait(init) 
* ; states, external RDY not in use 
timOctl   .word    00003C1H      ; Internal timer 0:1111000001;(301)1100000001 
timlctl   .word    00003C1H      ; Internal timer 1: 1111000001; (301) 1100000001 
tim 1 prd   .word    007A120H      ;7A 120H=500000d, 10MHz, 50%duty =50ms*2=100ms 
wait4t    .word    0000100H      ; (cmdl0,cmdl) 
* 
* 
* 

dp_mem    .word    0100000H      ; Pointer for dual port memory (command reg) 

savesetup) 
dp_int   .word    00003FEH      ; Pointer for setting interrupt flag (cmd 10, 

;  (init, 

isr_mode,cmdl) 
dp_cint  .word    00003FFH ; Pointer for clearing interrupt flag (init) 
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tmsoaci .set     0000001H      ; Ac trip current level (savesetup, 

set_oc,cmd29) 
tms_acv  .set 
tmsbdly .set 
tms_btime .set 
tms_dci   .set 
tms_odci .set 
tms_Vref .set 
tms_dt   .set 
tms_of   .set 
tms_swf .set 
tms_aci  .set 
tms_blk  .set 

sine_tbl,cmdl) 
tms_acs  .set 
tms_dcs  .set 
tms_step .set 
tmsdelay .set 
tmsswp  .set 

0000002H 
0000003H 
0000004H 

0000005H 
0000006h 
0000007H 

0000008H 
0000009H 
OOOOOOaH 

OOOOOObH 
OOOOOOcH 

OOOOOOdH 
OOOOOOeH 
OOOOOOfH 
000001OH 
0000011H 

init_swct,cmdl) 
tms_stepx .set     0000012H 
tms_ta   .set     0000013H 
tins tb   .set     0000014H 

;test 
; Boost delay (init_swct) 
; Boost time (save_setup, init_swct) 

; Dc current 
; Dc trip current level(set_oc) 

; Dc voltage 
; Deadtime (save_setup) 
; Ac frequency (save_setup) 

; Switching frequency (save_setup) 
; Ac current 
; Block size (cmdlO,save_setup, 

; current sensor 
; voltage sensor (set_oc,cmdlO,cmdl) 
;Step 

; Delay 
; Switching period (init,cmdlO,save_setup, 

; Step(cmdl0,save_setup,isr0,isrl,isr2,cmd26) 
; ta const(init_swct,modelO,save_setup,model) 
; tb const(init,cmdlO,save_setup,modelO,cmdl, 

model) 
tms_kc .set 
tms_kcb .set 
tinsbt .set 
tms_bi .set 
tins mode .set 

0000015H 
0000016H 

0000017H 
0000018H 

0000019H 

; (init_pid,model0) 

tins_swp_120 .set   OOOOOlaH 
tmscommand .set   00000 lbH 
L_R_posit .set     00000 IcH 
Vref_desired .set  00000 ldH 
UMIN     .set     00000 leH 
UMAX     .set     00000 lfH 
Vdiff    .set     0000020H 
Vd int   .set     0000021H 

.set 

.set 
.set 
.set 

hn 
hv 
hi 
iL 
iout 
Vdiffa 
Vdiffb 
Vd_inta 
Vd_intb 
Vout 
Vininv 
DUTY 
vperfreq .set 

; (initjpid,modelO) 
; (init_pid,modelO) 

; Mode (isr_mode,cmd27) 
; (init_swct,save_setup) 
jcommand (L/R_sw) 

;Local/remote sw posit (L/R_sw) 
;front panel desired Vref (L/R_sw,timel) 

; (init_pid,modelO) 
; (init_pid,modelO) 

; Vout-Vref 
; integral of Vdiff 

0000022H       ; 
0000023H 
0000024H 
0000025H 

.set   0000026H 
.set   0000027H 
.set   0000028H 
.set   0000029H 
.set   000002aH 

.set   000002fH    ; DC input (mode 10) 
.set   0000030H    ;" 
.set   0000031H 

0000033H      ; Volt per frequency ratio 
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stopfreq .set 
stopvolt .set 
tms_invdv .set 
*s 
Dss 
d 

0000034H 
0000035H 

0000036H 

; Target frequecy 
; Target voltage 

; (init,cmdlO,cmdl) 

.set 
.set 

0000037h 
0000038h 

count .set   0000039h 

tms_tboost .set 
tmsacscale .set 
tms_dcscale .set 
tms_outputb .set 
tms_ilmin .set 
tblsize  .set 
K_slave .set 
iL_s!ave .set 
iL_master .set 
ioslave .set 
io_master .set 
Vin      .set 

000003aH 
000003bH 
000003cH 
000003eH 

000003fH 
00000laH 

0000040H 
0000041H 
0000042H 

0000043H 
0000044H 

0000045H 

; (save_setup,init_swct,isrO,isrl ,isr2,cmd28) 

; (cmdl0,init,cmdl) 
; (cmdl0,cmdl) 

; (save_setup,cmd29) 
; Setup table size  (save_setup) 

;OverCurrent Trip Code 

tripm      .set    0000046H        ; 
trip_s     .set   0000047H       ; 
io_m_116    .set   0000048H       ; 
io_s_116    .set   0000049H       ; 
tau_2      .set   000004aH       ; 
************************************* 
* 

ct_swfreg .word    0804000H      ; Switching freq timer (init_ct,init_swct) 
ct_port   .word    0804100H      ; Timer control register (ct_port,init_ct, 

cmd 10,isr_mode,cmd 1) 
ct_phasea .word    0804200H 
ct_phaseb .word 
ct_phasec .word 
d_output .word 
dinput  .word 
inputcs   .word 
acs 
bcs 
ccs 
dacl 
dac 2 

.word 

.word 
.word 

.word 

.word 

0804300H 
0804400H 
0804500H 

0804600H 
0804900H 

0804a00H 
0804b00H 
0804c00H 

0804700H 
0804800H 

cmd_ad   .int startcmd 
modead  .intmodecmd 
* 

mask_int0 .set 0000001H 
maskintl .set 0000002H 
mask int2 .set     0000004H 

; Phase A timer 
; Phase B timer (init_ct,init_swct,isrl) 
; Phase C timer (init_ct,init_swct,isr2) 
; General purpurse D/O port (init,cmdl) 

; General purpurse digital input port 
; Input voltage and current ADC (init) 

; Phase a output V & I ADC (isrl,isr2) 
; Phase b output V & I ADC (isr0,isr2) 
; Phase c output V & I ADC (isrO.isrl) 

; Digital to Analog converter 1 
; Digital to Analog converter 2 

(read_cmd) 
; (isr_mode) 

; Set external interrupt 0 (isrO) 
; Set external interrupt 1 (isrl) 
; Set external interrupt 2 (isr2) 
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mask_int3 .set     0000008H ; Set external interrupt 3 (isr3) 
maskJimerO .set   OOOO1O0H ; Set internal timer 0 interrupt 
mask_timerl .set   0000200H ; Set internal timer 1 interrupt 
mask_dac .set     0000800H ; allow 2's comp numbers in dac 

clear_main .word   0004444H      ; (cmdlO,isr_mode,cmdl) 
reset_out .word    OOOffffH      ; (init,cmdlO,isr_mode,cmdl) 

* Define default values      L/R sw 

oaci .word 300 
acv .word 120 
bdly .word 10 
btime .word 4 
dci .word 10 
odci .word 200 
Vref .word 43 
dt .word 14 
of .word 60 
swf .word 20000 
aci .word 10 
blk .word 2000 
acs .word 50 
des .word 500 
step .word 50 
delay .word 10000 
kc .word 17333 
keb .word 9 
bt .word 105 
bi .word 2 
L_R_posit       .word 00H 
command        .word 10 
mode .word 10 

* Define constants 
* 

swpconst      .word   1 OOOOOOC 
invllbits      .float 0.0( )048828 
mil .float 0.001 ;< 
en7 .float 0.0000001 ; 
en6 .float 0.000001 
en5 .float 0.00001 
en4 .float 0.0001 
en3 .float 0.001 
en2 .float 0.01 
enl .float 0.1 
AVE .float 0.2 
max .float 0.95 
min .float 0.05 

; (save_setup) 

; (init_pid) 

******************************************* 

; OverCurrent Trip Code 
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full       .float 116.0 
limit      .float 58.0 
******************************************* 
* 

;=(BOOT)cmd       .usect "dualport",10000h ;==(BOOT)= 
cmd       .usect "dualport",10000h ;==(EPROM)= 
* 

ctio      .usect "xbus",2000h 
lookup    .usect "ram 1 ",400h 
varible   .usect "ram2",400h 
* 

* isrO: SSCM SLAVE UNIT interrupt service rountine 
* 

;=(BOOT) .sect     "isrO" 
isrO:    NOP ;==(EPROM)= 

PUSH ST ; Save registers 
PUSH IR1 ; 
PUSH R7 ; 
PUSHF R7 ; 
PUSH R6 ; 
PUSHF R6 ; 
PUSH R5 ; 
PUSHF R5 ; 
PUSH R4 ; 
PUSHF R4 ; 
PUSH R3 ; 
PUSHF R3 ; 
PUSH R2 ; 
PUSHF R2 ; 
PUSH Rl ; 
PUSHF Rl ; 
PUSH R0 ; 
PUSHF R0 ; 
PUSH ARO ; 
PUSH AR1 ; 
PUSH AR2 ; 

PUSH AR3 ; 
PUSH AR4 ; 
PUSH AR5 ; 

PUSH AR6 ; 
PUSH AR7 ; 

;==(BOOT)= Named Section 

LDI 
waitOO: SUBI     01H,R7 

BNZ 

LDI 
LDI 

LDI @bcs,AR2 
LDI 

0A0H,R7 

waitOO 

@inputcs,AR0 
@acs,ARl 

@ccs,AR3 

; Pointer for DC ADC 
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LDI        *ARO,RO 
NOP 
NOP 
LDI        *AR1,R1 
NOP 
NOP 
LDI        *AR2,R2 
NOP 
NOP 

LDI     *AR3,R3 
NOP 
NOP 
LDI 00FH,R7 

waitO:    SUBI     01H,R7 
BNZ waitO 

* STORE SAMPLED VOLTAGES AND CURRENTS 

LDI *AR0,R0 
AND iL_slave(MSB) 

NOP 
NOP 
LDI 
NOP 

; start conversion 

;READ.. Vinput(LSB) 

NOP 

LDI 

LDI 
NOP 
NOP 
*AR3,R4 
NOP 
NOP 
A2Dfltr RO, R7 
A2Dfltr R1,R7 
A2Dfltr R2, R3 
A2Dfltr R4, R5 

*AR1 ,R1 ; READ.. Voutput(LSB) AND io_slave(MSB) 

*AR2,R2 ; READ.. iL_slave(LSB) AND iL_master(MSB) 

; READ.. io_slave(LSB) AND io_master(MSB) 

, R0= Vinput(LSB), R7=iL_sIave(MSB) 
! Rl= Voutput(LSB), R7=io_slave(MSB) 
; R2=iL_slave(LSB), R3=iL_master(MSB) 
; R4=io_slave(LSB), R5=io_master(MSB) 

*************************************************************************** 

LDI *AR0,AR4 ;READ.. Vinput(LSB) AND 
iL_slave(MSB) 

NOP 
NOP 
LDI 
NOP 

NOP 
LDI 
NOP 
NOP 

LDI *AR3,AR7 
NOP 
NOP 

*************process gjj^ Accumulate Data 

LDI     AR4, R6 
A2Dfltr  R6, R7 ; R6= Vinput(LSB), R7=iL_slave(MSB) 
ADDF       R6, RO ; R0= Vinput (2) 

*AR1,AR5 ; READ.. Voutput(LSB) AND io_slave(MSB) 

*AR2,AR6 ; READ.. iL_slave(LSB) AND iL_master(MSB) 

; READ.. io_slave(LSB) AND io_master(MSB) 
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LDI     AR5, R6 
A2Dfltr R6,R7 
ADDF R6, Rl 

LDI     AR6, R6 
A2Dfltr R6,R7 
ADDF R6, R2 
ADDF R7, R3 

LDI     AR7, R6 
A2Dfltr R6,R7 
ADDF R6, R4 
ADDF R7, R5 

; R6= Voutput(LSB), R7=io_slave(MSB) 
;Rl=Voutput(2) 

; R6=iL_slave(LSB), R7=iL_master(MSB) 
; R2 = iL_slave (2) 
;R3 = iL_master(l) 

; R6=io_slave(LSB), R7=io_master(MSB) 
; R4 = iout_slave (2) 
; R5 = iout_master (1) 

LDI *AR0,AR4 ; READ.. Vinput(LSB) AND iL_slave(MSB) 
NOP 
NOP 
LDI 
NOP 

NOP 
LDI 
NOP 
NOP 

LDI *AR3,AR7 
NOP 
NOP 

********** ***process ^ accumulate Data 

LDI     AR4, R6 
A2Dfltr  R6,R7 
ADDF       R6, RO 

*AR1,AR5      ; READ.. Voutput(LSB) AND io_slave(MSB) 

*AR2,AR6 ; READ.. iL_slave(LSB) AND iL_master(MSB) 

; READ.. io_s!ave(LSB) AND io_master(MSB) 

; R6= Vinput(LSB), R7=iL_slave(MSB) 
; R0= Vinput (2) 

LDI     AR5, R6 
A2Dfltr R6,R7 
ADDF R6, Rl 

LDI      AR6, R6 
A2Dfltr R6,R7 
ADDF R6, R2 
ADDF R7, R3 

; R6= Voutput(LSB), R7=io_slave(MSB) 
;Rl=Voutput(2) 

; R6=iL_slave(LSB), R7=iL_master(MSB) 
;R2 = iL_slave (2) 
;R3 = iL_master(l) 

LDI     AR7, R6 
A2Dfltr  R6,R7 
ADDF       R6, R4 
ADDF       R7, R5 

; R6=io_slave(LSB), R7=io_master(MSB) 
; R4 = iout_slave (2) 
; R5 = ioutjmaster (1) 

******** **************************************************++t**+*+++++1|,++^+ 

LDI *AR0,AR4 ; READ.. Vinput(LSB) AND 
iL_slave(MSB) 

NOP 
NOP 
LDI *AR1,AR5 ; READ.. Voutput(LSB) AND io_slave(MSB) 
NOP 

NOP 
LDI *AR2,AR6 ; READ.. iL_slave(LSB) AND iL_master(MSB) 
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NOP 
NOP 

LDI *AR3,AR7 ; READ.. io_slave(LSB) AND io_master(MSB) 
NOP 
NOP 

*************process anl^ Accumulate Data 

LDI     AR4, R6 
A2Dfltr R6,R7 
ADDF R6, RO 

LDI     AR5, R6 
A2Dfltr R6,R7 
ADDF R6, Rl 

LDI     AR6, R6 
A2Dfltr R6,R7 
ADDF       R6, R2 
ADDF       R7, R3 

LDI   " AR7, R6 
A2Dfltr R6,R7 
ADDF       R6, R4 
ADDF       R7, R5 

; R6= Vinput(LSB), R7=iL_slave(MSB) 
; R0= Vinput (2) 

; R6= Voutput(LSB), R7=io_slave(MSB) 
;Rl=Voutput(2) 

; R6=iL_slave(LSB), R7=iL_master(MSB) 
; R2 = iL_slave (2) 
;R3 = iL_master(l) 

; R6=io_slave(LSB), R7=io_master(MSB) 
; R4 = iout_slave (2) 
; R5 = iout_master (1) 

*************************************************************************** 

iLslave(MSB) 
LDI 

NOP 
NOP 
LDI 
NOP 

NOP 
LDI 
NOP 
NOP 

LDI *AR3AR7 
NOP 
NOP 

*************process an(j Accumulate Data 

LDI     AR4, R6 
A2Dfltr  R6,R7 
ADDF       R6, RO 

*AR0AR4 ;READ.. Vinput(LSB) AND 

*AR1 AR5 ; READ.. Voutput(LSB) AND io_slave(MSB) 

*AR2,AR6 ; READ.. iL_slave(LSB) AND iL_master(MSB) 

READ.. io_slave(LSB) AND io_master(MSB) 

; R6= Vinput(LSB), R7=iL_slave(MSB) 
; R0= Vinput (2) 

LDI     AR5, R6 
A2Dfltr  R6,R7 
ADDF       R6, Rl 

LDI     AR6, R6 
A2Dfltr  R6,R7 
ADDF       R6, R2 
ADDF       R7, R3 

LDI     AR7, R6 
A2Dfltr R6,R7 
ADDF       R6, R4 

; R6= Voutput(LSB), R7=io_sIave(MSB) 
;Rl=Voutput(2) 

; R6=iL_slave(LSB), R7=iL_master(MSB) 
;R2 = iL_slave (2) 
;R3 = iL_master(l) 

; R6=io_slave(LSB), R7=io_master(MSB) 
; R4 = iout_slave (2) 
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ADDF       R7, R5 ; R5 = iout_master (1) 

POP  AR7 ; 
POP  AR6 ; 

POP  AR5 ; 
POP  AR4 ; 

POP  AR3 
POP  AR2 
POP  AR1 
 Calculate System Voltages 
MPYF @AVE,R0 
MPYF *+AR3(tms_dcscale),R0   ; 
RND RO 
STF R0,*+AR3(Vin) 

MPYF @AVE,R1 
MPYF *+AR3(tms_dcscale),Rl    ; 
RND Rl 
STF Rl,*+AR3(Vout) 

MPYF @AVE,R2 
MPYF *+AR3(tms_acscale),R2 

RND   R2 
STF R2,*+AR3(iL_slave) 

MPYF   @AVE,R3 
MPYF   *+AR3(tms_acscale),R3 

RND  R3 
STF R3,*+AR3(iL_master) 

MPYF   @AVE,R4 
MPYF   *+AR3(tms_acscale),R4 

RND   R4 
STF R4,*+AR3(io_slave) 

; STORE Input voltage Vin 

; STORE Output voltage Vout 

MPYF   @AVE,R5 
MPYF   *+AR3(tms_acscale),R5 

RND   R5 
STF R5,*+AR3(io_master) 

******************************************* 

; OverCurrent Trip Code 

LDF   @full,R7 ; R7=116.0 
SUBF .R7,R5 ; R5=io_master(n)-116.0 
LDF    *+AR3(io_m_116),R7    ; R7=io_master(n-l)-116.0 
STF   R5,*+AR3(io_m_116)   ; Save io_master(n) for next pass 
ADDF  R5,R7 ; R7=Sum of n andn-1 
LDF    *+AR3(tau_2),R5      ; R5=T/2 
MPYF   R5,R7 ; R7=T/2(n+ n-l) 
LDF    *+AR3(trip_m),R5      ; R5 previous integral total 
ADDF  R5.R7 ; R7 Total integral value 
BN    clrtripm ; Assuring non-negative integral 
STF   R7,*+AR3(trip_m)     ; Stores trip_m(n) for next pass 
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LDI   @cmd_ad,R5 ; Jump target if needed for shutdown 
LDF   @limit,R6 ; R6=58.0 integral limit 
SUBF  R6,R7 ; 
BNN   R5 ; Shuts down Bucks 
BR    iokm ; Branch to output current okay 

clrtripm: LDF 0.0,R5 ; 
STF   R5,*+AR3(trip_m)     ; Resets integral if negative 

iokm: LDF    *+AR3(io_master),R5   ; Resets R5 to io_master 

LDF   @full,R7 ; R7=116.0 
SUBF  R7,R4 ; R4=io_slave(n)-116.0 
LDF   *+AR3(io_s_116),R7    ; R7=io_slave(n-l)-116.0 
STF   R4,*+AR3(io_s_116)    ; Save io_slave(n) for next pass 
ADDF  R4,R7 ; R7=Sum ofn andn-1 
LDF    *+AR3(tau_2),R4      ; R4=T/2 
MPYF  R4,R7 ; R7=T/2(n+ n-l) 
LDF   *+AR3(trip_s),R4     ; R4 previous integral total 
ADDF  R4,R7 ; R7 Total integral value 
BN    clrtrips ; Assuring non-negative integral 
STF   -R7,*+AR3(trip_s)     ; Stores trip_s(n) for next pass 
LDI   @cmd_ad,R4 ; Jump target if needed for shutdown 
LDF   @limit,R6 ; R6=58.0 integral limit 
SUBF  R6,R7 ; 
BNN   R4 ; Shuts down Bucks 
BR    ioks ; Branch to output current okay 

clrtrips: LDF 0.0,R4 ; 
STF   R4,*+AR3(trip_s)     ; Resets integral if negative 

ioks: LDF   *+AR3(io_slave),R4    ; Resets R4 to ioslave 

ADDF3   R4,R5,R0 
RND    R0 
STF       R0,*+AR3(iout)       ; STORE THE TOTAL OUTPUT CURRENT iout 

ADDF3   R2,R3,R0 
RND   R0 
STF       R0,*+AR3(iL)       ; STORE THE TOTAL Inductor CURRENT iL 

— Calculate —> Iouterror 
SUBF   R4, R5 ; R5= Vdiff(n) = (io_master - ioslave) 

LDF   *+AR3(Vin),R0 
CALL   FPINV ; 
RND R0 ; 
STF R0,*+AR3(Vin_inv) ; STORE 1/Vin 

LDF *+AR3(Vdiffa), R3    ; Prepare for Trapzd integration.... 
STF R3, *+AR3(Vdiff)     ; by loading old (n-1) values into Vdiff 
LDF *+AR3(Vd_inta), R0   ; and Vd_int 
STF R0, *+AR3(Vd_int)    ; 
  TRAPZD INTEGRATION from Mode 10 Routine 

LDF *+AR3(Vdiff) ,R3 ;*R3= Vdiff(n-1) 
ADDF R5,R3 ;R3= Vdiff(n)+Vdiff(n-1) 
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MPYF   *+AR3(K_sIave),R3 ; R3= Vd_int=K*T/2 [Vdiff(n)+Vdiff(n-1)] 
ADDF   *+AR3(Vd_int),R3 ; R3= Vd_int(n) = Vd_int + Vd_int(n-1) 

; Limit the Integrator 
LDF  R3,R7 ; R7(temp)=Vd_int(n) 
ABSF R7 ; 
CMPF   *+AR3(tms_dci),R7     ; [abs(Vd_int(n)) - Idc] 
BLE NoLimO       ; Limit reached stop increasing 
LDF    *+AR3(Vd_int),R3      ; R3=Vd_int(old) 

NoLimO: NOP ; 
; Save Integ quantities for next time 

RND R5 
STF R5,*+AR3(Vdiffa) 
RND R3 
STF R3,*+AR3(Vd_inta) 

; Get Master DutyCycle ************************** 
* 

LDF *+AR3(Vdiffb),R0 
STF R0,*+AR3(Vdiff) 
LDF *+AR3(Vd_intb),R0 
STF R0,*+AR3(Vd_int) 
CALL isrmode ; 

; Save Integ quantities for next time 
RND R5 
STF R5,*+AR3(Vdiffb) 
RND R3 
STF R3,*+AR3(Vd_intb) 

; Write the Master Duty to A phase CTC (SI) ******************** 
LDI   @ct_phasea,ARO ; Pointer for phase A counter 
STI  R7,*+AR0(2)    ; Store LSB of counter 2 
LSH  -08H,R7        ; 
STI  R7,*+AR0(2)    ; Store MSB of counter 2 

* 

;  UPDATE SLAVE DUTY CYCLE************************** 
LDF      *+AR3(d), R4 ; R4 = (Dss - d 1) --> master dutycycle 
ADDF *+AR3(Vd_inta), R4     ; R4 = (Dss - d 1) + Vd_int 

* 

LDF *+AR3(tms_oaci),R0       ;R0=kp (GUI value oaci) 
MPYF *+AR3(Vdiffa), RO       ;RO=kp(iomaster-ioslave) 
ADDF RO, R4 ;R4=(Dss-dl)+Vdint+kp(iomaster-iosIave) 

* ; =Master_Duty+integ(ki*io_err)+kp(io_err) 
; Limit the duty cycle 
HiLimO: CMPF @max,R4 

BLE   LoLimO 
LDF   @max,R4 

LoLimO: CMPF @min,R4 
BGT   SameO 
LDF   @min,R4 

SameO: NOP 

LDI *+AR3(tms_swp),R7 ; 
FLOAT R7 ; 
MPYF R7,R4 ; 

SUBF R4,R7 ; R7= duty = tms_swp - (R4* tms_swp) 
; Here R7 = (1 - d) to compensate for the PEBB EPLD inversion 
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FIX R7 ; 
 Write the Slave Duty to B phase CTC (SI) ********************* 

LDI  @ct_phaseb,ARO ; Pointer for phase B counter 
STI  R7,*+AR0(2)    ; Store LSB of counter 2 
LSH  -08H,R7        ; 
STI  R7,*+AR0(2)    ; Store MSB of counter 2 

****************************************************************** 

Overtem/undervoltage protection (L/R_sw) 
Gen I/O word     bitO = overtemp slave, bitl = overtemp master 

bit2 = control voltage slave,  bit3 = control voltage master 
LDI @d_output,ARO        ;set pointer to Gen I/O 
STI *AR0,R0 ;R0=gen_I/O word 
AND 000fH,R0 ;mask all but 4 lsbs 
LDI   @cmd_ad,R4 ; Jump target if needed for shutdown 
CMPI 0fH,R0 ;see if word is good 
BNE R4 ; Shuts down Bucks 

***************************************************************** 

POP  ARO ; 
POPF RO ; 
POP  RO ; 
POPF Rl ; 
POP  Rl ; 
POPF R2 ; 
POP  R2 ; 
POPF R3 ; 
POP  R3 ; 
POPF R4 ; 
POP   R4 ; 
POPF R5 ; 
POP  R5 ; 
POPF R6 ; 
POP  R6 ; 
POPF R7 ; 
POP  R7 ; 
POP  IR1 ; 
POP  ST ; 

ANDN mask_intO,IF    ; Clear interrupt 0 
RETI ; Return and enable interrupt 

* isrl: SSCM MASTER UNIT — interrupt service rountine 
* 

;=(BOOT) .sect     "isrl" ;=(BOOT)== Named Section 
isrl:  NOP ;=(EPROM)= 

ANDN mask_intl,IF   ; Clear interrupt 1 
RETI ; Return and enable interrupt 

isr2: Phase C interrupt service rountine 
* 

;==(BOOT) .sect     "isr2" ;=(BOOT)= Named Section 
isr2: NOP ;=(EPROM)== 
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ANDN mask_int2,IF ; Clear interrupt 2 
RETI ; Not Used 

* irs3: Dual port memory interrupt service rountine 

;=(BOOT) .sect     "isr3"         ;=(BOOT)== Named Section 
isr3:    NOP                 ;==(EPROM)= 

PUSH ST ; Save registers 
PUSH DP ; 
PUSH IR1 ; 
PUSH R7 ; 
PUSHF R7 ; 
PUSH R6 ; 
PUSHF R6 ; 
PUSH R5 ; 
PUSHF R5 ; 
PUSH R4 ; 
PUSHF R4 ; 
PUSH R3 ; 
PUSHF R3 ; 
PUSH R2 ; 
PUSHF R2 ; 
PUSH Rl ; 
PUSHF Rl ; 
PUSH RO ; 
PUSHF RO     ; 

* 

LDI   @dp_cint,IRO    ; 
LDI   *+AR4(IR0),R0   ; Clear interrupt 
CALL readcmd       ; 
ANDN mask_int3,IF    ; Clear interrupt 3 

POPF RO 
POP RO 
POPF Rl 
POP Rl 
POPF R2 
POP R2 
POPF R3 
POP R3 
POPF R4 
POP R4 
POPF R5 
POP R5 
POPF R6 
POP R6 
POPF R7 
POP R7 
POP IR1 
POP DP 
POP ST 
NOP 
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NOP 
RETI ; Return and enable interrupt 

* timerO: Startup timer 

.sect     "timeO" 
;=(EPROM)== 

;(BOOT) 
timeO:   NOP 

PUSH RO ; 
PUSHF RO ; 
PUSH ARO ; 
LDI   *+AR3(tms_stepx),R0; 
ADDI 01H,RO ; 
STI  R0,*+AR3(tms_stepx); 
CMPI *+AR3(stopfreq),R0; 
BLE  looptimerO     ; 
LDI  OO0H,RO        ; 
LDI  @ctrl,AR0      ; 
STI  R0,*+AR0(20H)   ; Clear counter 
ANDN mask_timer0,IE ; Disable timer interrupt 
POP  ARO ; 
POPF RO ; 
POP  RO ; 
RETI ; 

looptimerO: LDF *+AR3(vperfreq),R0; 
ADDF *+AR3(tms_Vref),R0; 
RND  RO ; 
STF  R0,*+AR3(tms_Vref); 
POP  ARO ; 
POPF RO ; 
POP  RO ; 
RETI ; 

;=(BOOT)== Named Section 

* timer 1: 100ms Timer 
* 

;=(BOOT)      .sect 
timel: NOP 

PUSH ST 
PUSH DP 
PUSH IR1 
PUSH    R7 
PUSHF R7 
PUSH    R6 
PUSHF R6 
PUSH    R6 
PUSHF R5 
PUSH    R4 
PUSHF R4 
PUSH    R3 
PUSHF R3 
PUSH    R2 

"time 1"     ;=(BOOT)== Named Section 
;=(EPROM)= 
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PUSHF R2 
PUSH    Rl 
PUSHF Rl 
PUSH    RO 
PUSHF RO 
PUSH    ARO 

* 

LDI *+AR3(L_R_posit),Rl   ;get previous L/R posit 
LDI @d_output,ARO        ;set pointer to Gen I/O 
STI *AR0,R0 ;R0=gen_I/O word 
AND 0010H,R0 ;mask all but L/R sw posit (bit4) 
CMPI 00H,R0 ;if 0, in remote 
BEQ remote 

local: LDI 303H,IE ;disables int3 in local mode 
CMP R0,R1 ;see if sw same as last interrupt 
BEQ update_vref ;if in local, update vref and endint 

;if sw is now in L from R, shutdown and restart in local mode 
STI R0,*+AR3(L_R_posit)  ;save current sw posit 
call cmdO ;to shutdown unit 

restart: call readcmd ;to restart 
BR Endint 

update_vref: LDF R0,*+AR3(tms_Vref) ;get Vref from memory 
LDI @adcl_cs, ARO        ;pointer to ADC for front panel 
LDI *AR0,R1 ;Ioads old data,inits new read 
NOP 
NOP ;2 nops for delay 
LDI *AR0,R1 ;read in new Vref from front panel 
A2Dfltr R1,R7 ;to extract front panel voltage if needed 
MPYF *+AR3(tms_dcscale),Rl ;scale the word to make actual voltage 
STF Rl,*+AR3(Vref_desired) ;store front panel as desired Vref 
SUBF3 R0,R1,R2 ;R2=R1-R0 (Vdesired-Vref) 
CMPF 10.0.R2 ;see if greater than 10V increase 
BLE nostep 

step:   LDI 00H,*+AR3(tms_stepx) ;set counter to zero 
MPYF @enl,R2 ;R2=voltage difference/10 
FIX R2 ;make R2 an integer 
LDI R2,*+AR3(stopfreq)   ;use R2 as number of steps required 
LDF 10.0,*+AR#(vperfreq) ;10v is the step size 
LDI @ctrl,AR0 ; 
LDI @tim 1 prd,R0 ;load 100ms period 
STI R0,*+AR0(28H)        ;load in timerO 
LDI @tim0ctrl,R0 
STI R0,*+AR0(30H)        ;init timerO for step 
BR Endint 

no_step: LDF Rl,*+AR3(tms_Vref)   ;if no step req'd, save front panel as Vref 
BR End_int 

remote: LDI 30bH,IE ;enable intr 0,1,3,8,9 
CMP R0,R1 ;see if previous sw posit matches present 
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BEQ Endjnt ;if still in remote, end intr 

;if sw changed from local and now in remote, shutdown and wait for PC command 
STI R0,*+AR3(L_Rjposit)  ;store present sw posit for later 
call cmdO ;to shutdown bucks 

Endjnt: ANDN maskJimerl,IF; RESET timer interrupt Flag 
POP  ARO 
POPF RO 
POP  RO 
POPF Rl 
POP  Rl 
POPF R2 
POP  R2 
POPF R3 
POP  R3 
POPF R4 
POP  R4 
POPF R5 
POP- R5 
POPF R6 
POP  R6 
POPF R7 
POP  R7 
POP  IR1 
POP  DP 
POP  ST 
RETI 

.end 
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APPENDIX C. ARCP CLOSED-LOOP CONTROL CODE 

*********************************************************** 

NPS POWER LAB 
TMS320C30 CONTROL CODE 

BY TUAN DUONG NSWC 

MODIFIED FOR CLOSED-LOOP CONTROL OF THE ARCP 
BY DAVID FLOODEEN 

*********************************************************** 
* 

.title   "PEBB" 

.global reset,init 

.global int0,intl,int2,int3 

.global tintO 

.global isr0,isrl,isr2,isr3 

.global timeO 

.global SIN,FPINV,divi 

.sect "vecs" 
reset .word init          ; 
intO .word isrO          ; 
intl .word isrl          ; 
int2 .word isr2          ; 
int3 
* 

.word isr3          ; 

.space   4 
tintO .word timeO 
tintl .word timel 

* 
.space   33 

.data 
sram .word 0080000H 
blkO .word 0809800H 
blkl .word 0809C00H 
stck .word 0809F00H 
Ctrl .word 0808000H 
xbus .word 0000048H 

pbus     .word    0000428H 

Named section 
RS- loads address init to PC 
INTO- loads address intO to PC 
INT1- loads address intl to PC 
INT2- loads address int2 to PC 
INT3- loads address int3 to PC 

; Reserved space 
; Timer 0 interrupt processing 
; Timer 1 interrupt processing 

; Reserved space 

; Beginning address of SRAM 
; Beginning address of RAM block 0 
; Beginning address of RAM block 1 

; Beginning of stack 
; Pointer for peripheral-bus memory map 

; Xpansion bus: 2 wait states, external RDY 
; not in use (88) 

; Primary bus : IM bank compare, 1 wait states, 
; external RDY not in use 

; Internal timer 0: 1111000001; (301) 1100000001 
; 40H1 (lOus) 

; Internal timer 1:1111000001; (301) 1100000001 
;40Hl(2ms) 

timOctl   .word 00003C1H 
timOprd  .word 0000064H 
timlctl  .word 00003C1H 
timlprd  .word 0004E20H 
wait4t      .word      0000100H ; 
* 

dp_mem   .word    0100000H      ; Pointer for dual port memory (command reg) 
dp_int   .word 00003FEH      ; Pointer for setting interrupt flag 
dp_cint  .word 00003FFH      ; Pointer for clearing interrupt flag 
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dp_cmd   .set 0000000H ; Command register 
dpoaci   .set 0000002H ; Ac trip current level 
dp_acv   .set 0000004H ; Ac voltage 
dpbdly   .set 0000006H ; Boost delay 
dp_btime .set 0000008H ; Boost time 
dp_dci   .set OOOOOOaH ; Dc current 
dp_odci   .set OOOOOOch ; Dc trip current level 
dp_dcv   .set OOOOOOeH ; Dc voltage 
dp_dt    .set OOOOOlOH ; Deadtime 
dpof    .set 0000012H ; Ac frequency 
dp_swf   .set 0000014H ; Switching frequency 
dp_aci   .set 0000016H ; Ac current 
dpblk   .set 0000018H ; Block size 
dpacs   .set 00000laH ; Ac sensor 
dp_dcs   .set 00000IcH ; Dc sensor 
dp_step  .set 00000leH ;Step 
dp_delay .set 0000020H ; Delay 
dp_swp   .set 0000022H ; Switching period 
dp_stepx .set 0000024H ;Step 
dpta    .set 0000026H ; ta constant 
dptb    .set 0000028H ; tb constant 
dp_kc    .set 000002aH ) 
dp_kcb   .set 000002cH ) 
dp_bt    .set 000002eH 5 

dp_bi    .set 0000030H ) 
dp_mode   .set 
* 

0000032H ; Mode 

* 

tms_cmd   .set OOOOOOOH ; Command register 
tms_oaci .set 0000001H ; Ac trip current level 
tmsacv  .set 0000002H ; Ac voltage 
tms_bdly .set 0000003H ; Boost delay 
tms_btime .set 0000004H ; Boost time 
tms_dci  .set 0000005H ; Dc current 
tms_odci .set 0000006h ; Dc trip current level 
tms_dcv   .set 0000007H ; Dc voltage 
tms_dt   .set 0000008H ; Deadtime 
tms_of   .set 0000009H ; Ac frequency 
tms_swf .set OOOOOOaH ; Switching frequency 
tms_aci  .set OOOOOObH ; Ac current 
tmsblk  .set OOOOOOeH ; Block size 
tms_acs   .set OOOOOOdH ; Ac sensor 
tms_dcs  .set OOOOOOeH ; Dc sensor 
tms_step .set OOOOOOfH ;Step 
tms_delay .set OOOOOlOH ; Delay 
tms_swp   .set OOOOOl1H ; Switching period 
tms_stepx .set 0000012H ;Step 
tms_ta   .set 0000013H ; ta constant 
tms_tb   .set 0000014H ; tb constant 
tms_kc   .set 0000015H 5 

tms_kcb  .set 0000016H » 
tms_bt   .set 0000017H ) 
tms_bi   .set 0000018H » 
tms mode .set 0000019H ; Mode 
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tms_swp_120 .set   00000 laH      ; 
tms cos   .set     00000lbH      ;offset for pointer to cos in sin table 
*tms_23    .set 
tins tractor .set 
UMIN 
UMAX 
INA 
INB 
INC 
iq_int 
id_int 
iqq 
idd 
T_2 
tmsiqe 
tms_ide 
Kpq 
Kiq 
Kpd 
Kid 
*c_vl 
*d_i 
*d_v 
* 

.set 
.set 

.set 

.set 

.set 
.set 
.set 

.set 

.set 
.set 

.set 

.set 
.set 
set 
.set 
set 

.set 
.set 
.set 
.set 

x_v      .set 
vperfreq .set 
stopfreq .set 
stopvolt .set 
tms_invdv .set 
tms_dtset .set 
dmax     .set 
dmin     .set 
tmstboost .set 
tms_acscale .set 
tms_dcscale .set 
tms_intbits .set 
tms_outputb .set 
tms ilmin .set 

'x 1 
* 

00000IcH 
00000ldH 
00000leH 
00000lfH 

0000020H 
0000021H 
0000022H 
0000023H 
0000024H 

0000025H 
0000026H 
0000027H 

0000028H 
0000029H 

000002aH 
000002bH 
000002cH 
000002dH 

000002eH 
000002fH 
0000030H 
0000031H 
0000032H 
0000033H 
0000034H 
0000035H 

0000036H 
0000037H 

0000038H 
0000039H 

000003aH 
000003bH 
000003cH 

000003dH 
000003eH 

000003fH 

running total of iq_integral 
running total of idintegral 

; difference between iqe* and iqe 
; difference between ide* and ide 
; tau/2 for use in integrating 

; commanded value iqe* 
; commanded value ide* 

; constant for closed loop 
; constant for closed loop 
; constant for closed loop 

; constant for closed loop 
s 

; DC input 

; Xtra v and i ADC 

; Volt per frequency ratio 
; Target frequecy 
; Target voltage 

tblsize   .set     00000laH      ; Setup table size 

ports    .word    0804500H ; Pointer for i/o ports 
ctswfreg .word    0804000H ; Switching frequency timer 
ct_port  .word    0804100H ; Timer control register 
ct_phasea .word    0804200H ; Phase A timer 
ct_phaseb .word    0804300H ; Phase B timer 
ct_phasec .word    0804400H ; Phase C timer 
doutput .word    0804500H ; General purpurse digital output port 
dinput  .word    0804600H ; General purpurse digital input port 
dac_l     .word    0804700H ; Digital to Analog converter 1 
dac_2    .word    0804800H ; Digital to Analog converter 2 
inputcs  .word    0804900H ; Input voltage and current ADC 
acs      .word    0804a00H ; Phase a output voltage and current ADC 
bcs      .word    0804b00H ; Phase b output voltage and current ADC 
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ccs      .word    0804c00H 
adclcs   .word    0804d00H 
adc2_cs   .word    0804e00H 

cmd_ad    .int startcmd 
mode ad   .int mode cmd 

; Phase c output voltage and current ADC 
;ADC 1 
;ADC2 

mask intO .set 0000001H ; Set external interrupt 0 
maskjntl .set 0000002H ; Set external interrupt 1 
mask int2 .set 0000004H ; Set external interrupt 2 
mask_int3 .set 0000008H ; Set external interrupt 3 
masktimerO .set   0000100H ; Set internal timer 0 interrupt 
maskjimerl .set   0000200H 
* 

; Set internal timer 1 interrupt 

* 

clear_ main .word   0004444H 
resetout .word OOOffffH 
allon .set 0000000H 
a_on .set 0000000H 
a_a3 ".set 0000001H 
a_a4 .set 0000002H ) 
b on .set 0000000H 
b a3 .set 0000004H 
b_a4 .set 0000008H > 
con .set 0000000H 
c_a3 .set 000001OH 
c a4 .set 0000020H > 
* Define constants 
* 

onejji .float 3.14159263590 
two_pi .float 6.28318530718 
swpconst .word 10000000 
sqrt2 .float 1.414213562373 
sqrt3 .float 1.73205080757 
sqrt3_3 .float 0.57735026919 
sqrt23_3 .float 1.15470053838 
half     .float   0.5 ; 
halfl2    .float   2048 
invl lbits .float   0.00048828125 
tenu     .float   0.00001 
mil      .float   0.0001 ; 
bi       .float   0.2 ; 
umax     .float   0.05 ; 
urn in .float -0.05 
acdcconst .float 0.009765625 
acdchalf .float 0.00048828125 
acdcmax .float 1.0 
acdcmin .float -1.0 
zero float 0.0 
ave float 3.2                    ; 

tbmax .set 40 
tbmin .set 10                    ; 
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cmd .usect "dualport",10000h 
ctio .usect "xbus",2000h 
lookup .usect "ram l",400h 
varible .usect "ram2",400h 

* 
* 

.text 

*    ST — CPU status register 
*    IE — CPU/DMA interrupt enable flags 
*    IF - CPU interrupt flags 
*    IOI 
* 

' - I/O flags 

* The status register has the following arrangement: 
♦Bits: 31-14 13 12 11 10 9   8 7  6  5 4 3 2 10 
* Function: Resrv GIE CC CE CF Res. RM OVM LUF LV UF N Z V C 
* 
* 

*R0: 
*R1: 
*R2: - 

*R3: 
*R4: 
* R5: Saved during interrupt 0,1,2 
* R6: Saved during interrupts 0,1,2 
* R7: Saved during interrrupts 0,1,2 
* 

* ARO: 
*AR1: 
*AR2: 
*AR3: POINTER FOR INTERNAL MEMORY BLOCK 1 (do not change) 
*AR4: POINTER FOR DUAL-PORT MEMORY (do not change) 
*AR5: POINTER FOR INTERNAL MEMORY BLOCK 0 (do not change) 
*AR6: POINTER FOR SINEWAVE LOOKUP TABLE (do not change) 
*AR7: 
* 

POINTER FOR SINEWAVE LOOKUP TABLE (do not change) 

*IR0: 
*IR1: 
* 

Saved during interrupts 0,1,2 

init: LDI 0,DP            ; Point the DP register to page 0 
LDI 00H,ST          ; Clear and enable cache, and disable OVM (1800h) 
LDI 0000H,IE        ; Clear all interrupts     ' 
LDI @ctrl,AR0       ; Load peripheral bus memory-mapped reg 
LDI @xbus,R0        ; 
STI RO,*+AR0(60H)    ; Init expansion bus control reg 
LDI @pbus,R0        ; 
STI R0,*+ARO(64H)    ; Init primary bus control reg 
LDI @stck,SP         ; Initialize the stack pointer 
CALL initct         ; Init counter/timer 
LDI @d output,AR0    ; 
LDI 00FFH,R0        ; 
STI R0,*AR0         ; 
LDI @ct_port,AR0    ; Pointer for counter/timer control register 
LDI @reset_out,R0   ; 
STI RO,*AR0         ; Disable all output 
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* 
* 

LDI @ctrl,ARO 

* 

LDI @blkl,AR3 ; Sratch pad memory area 
LDI @dp_mem,AR4 ; Top of dual port memory 
LDI @bIkO,AR5 ; Sratch pad memory area 
LDI @sram,AR7 ; Top of the look up table 
LDI @dp cintJRO ; Clear dual port memory interrupt 
LDI *+AR4(IR0),R0 > 
LDI 000H,R0         ; Clear sram memory 
RPTS 2047            ; 
STI R0,*AR4++(1) i 

LDI @dp mem,AR4 ; Top of dual port memory 
LDI 0000H.IF        ; Clear all flags 
LDI 0008HJE        ; Enable interrupt 3 (dual port memory) 

* 
OR  02000H,ST ; Global interrupt enable 

* 

begin: NOP 
NOP 
NOP 

* 
* 

BR   begin          ; 

; Check command 
; Clear all other bits 

read_cmd: LDI   *+AR4(l),R0 
AND   00FFH,R0 
CMPI 01EH,R0        ; 
BHS   stopinit       ; Ignore command if command >= 23 
LDI   @cmd_ad,Rl      ; 
ADDI R1,R0 ; 
BNZ   R0 ; 

stopinit: RETS ; 

startcmd: BR cmdO 
BR cmdl 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 

Off 
Test Mode ARCP CONTROL 
AC to DC control 
Motor Control - Forward 
Motor Control - Reverse 
Actuator Control - Open 
Actuator Control - Close 
Actuator Control - Open 
Actuator Control - Close 
DC to DC Boost 
AC to DC Control 
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BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
BR cmdO 
RETS 

; Stepx 
; AC output voltage 
; Boost time 
; Set current boost limit 

* Turning off ARCP 
* 

cmdO:      LDI 08H,IE ; Disable interrupts 0,1,2 
LDI @ct_port,AR0    ; Pointer for counter/timer control register 
LDI @clear_main,R0    ; 
STI R0,*AR0 ; Disable all output 
STI R0,*+AR3(tms_outputb); 
LDI 030H,R0 

wait20:   SUBI01H,R0 
BNZ wait20 
LDI @reset_out,R0 
STI R0,*AR0 ; Disable all counter/timer output 
CALL initct ; 
LDI 00H,R0 ; 
STI R0,*+AR4(1)     ; 
LDI @dp_int,IR0      ;   . 
STI R0,*+AR4(IR0)    ; 
LDI @d_output,AR0    ; 
LDI OFFFH,R0        ; 
STI R0,*AR0 ; 
LDI @ct_port,AR0     ; Pointer for counter/timer control register 
LDI @reset_out,R0    ; 
STI R0,*AR0 ; Disable all output 
RETS ; 

* Test Mode 
* 

cmdl:      LDI 
LDI 
LDI 
STI 
LDI 

waitll:   SUBI 01H,R0 
BNZ  waitll 
LDI  @reset_out,R0 
STI  R0,*AR0        ; Disable all counter/timer output 

08H,IE ; Disable interrupts 0,1,2 
@ct_port,AR0    ; Pointer for counter/timer control register 
@clear_main,R0   ; 
R0,*AR0        ; Disable all output 
030H,R0 

CALL init_ct 
LDI   @sram,AR7 
CALL save_setup 

; Reset pointer for phase a 
; Save data in 32-bit format 
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CALL setoc ; 
CALL init_swct      ; Init switching frequency counters 
CALL sine_tbl       ; Generate a SINE lookup table 
LDI   *+AR3(tms_acv),R0; 
FLOAT RO ; 
MPYF @sqrt2,R0       ; 
RND    RO ; 
STF  R0,*+AR3(tms_acv); 

LDF   *+AR3(tms_invdv),R0; 
CALL FPINV ; 
LDI     *+AR3(tms_swp),Rl; 
FLOAT Rl ; 
LDF   @half,R2 
MPYF3 R1,R2,R3     ;R3=T/2 
RND     R3 
STF   R3,*+AR3(T_2)   ;store T/2 for use in integrating 
MPYF R1,R0 ; 
MPYF @half,R0       ; 
RND   RO ; 
STF   R0,*+AR3(tms_dtset); 
LDF   *+AR3(tms_tb),R0; 
STF   R0,*+AR3(dmax) ; 
NEGF RO ; 
STF   R0,*+AR3(dmin) ; 
LDF   0.5,R0 ; 
STF   R0,*+AR3(INA)   ; 
STF   R0,*+AR3(INB)   ; 
STF   R0,*+AR3(INC)   ; 

LDF      @zero,R0       ; 
STF   R0,*+AR3(iq_int); 

STF  R0,*+AR3(id_int); 
STF  R0,*+AR3(iqq)   ; 
STF  R0,*+AR2(idd)   initialize these to zero 

LDI      *+AR3(tms_acs),R0; 
FLOAT RO ; 
MPYF @invllbits,RO    ; 
RND    RO ; 
STF     R0,*+AR3(tms_acscale); 
LDI     *+AR3(tms_dcs),R0; 
FLOAT RO ; 
MPYF @invllbits,RO    ; 
RND    RO ; 
STF     R0,*+AR3(tms_dcscale); 

LDI   *+AR3(tms_blk),R0; 
LDI   04H,R1 ; 
CALL divi ; 
LDI   R0,R1 ; 
STI  R0,*+AR3(tms_cos); Reset pointer for cos function 
LDI   *+AR3(tms_blk),BK; 
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LDI  @ctrl,ARO      ; Load peripheral bus memory-mapped reg 
LDI  @timlprd,R0        ; 10ms 
STI  R0,*+AR0(38H)   ; 
LDI  @timlctl,R0    ; 
STI  R0,*+AR0(30H)   ; Init internal timer 1 
LDI  @d_output,AR0   ; 
LDI     0OFEH,R0       ; 
STI  R0,*AR0        ; 
LDI  @wait4t,R0 

wait31:   SUBI 01H,R0 
BNZ  wait31 

LDI @ct_port,AR0    ; Pointer for counter/timer control register 
LDI allon,R0       ; 
STI R0,*AR0        ; Enable all counter/timer output 
STI R0,*+AR3(tms_outputb); 
LDI 0209H,IE       ; Enable interrupts 0,3,9 
LDI 01H,R0 ; 
STI R0,*+AR4(1)    ; 
LDI @dp_int,IR0    ; 
STI R0,*+AR4(IR0)   ; 
RETS ; 

* Initialize counter/timer 

initct: LDI @ct_port,AR0 ; Pointer for counter/timer control register 
LDI 00ffH,R0 ; 
STI R0,*AR0 ; Disable all counter/timer output 
LDI @ct_swfreg,AR0   ; Pointer for switching frequency timer 1 
LDI 0034H,R0 ; Mode 2 (rate generator), 00110100B 
STI R0,*+AR0(3)     ; 
LDI 0074H,R0 ;01110100B 
STI R0,*+AR0(3)     ; 
LDI 00b4H,R0 ;10110100B 
STI R0,*+AR0(3)     ; 
LDI @ct_phasea,AR0   ; Pointer for phase a counter 
LDI 0012H,R0 ; Mode 1 (hardware retriggerable one-shoot), 0001001 OB 
STI R0,*+AR0(3)     ; 
LDI 0052H,R0 ; Mode 1, R/W LSB, 01010010B 
STI R0,*+AR0(3)     ; 
LDI 00b2H,R0 ; Mode 1, R/W LSB & MSB, 10110010B 
STI R0,*+AR0(3)     ; 
LDI @ctjphaseb,AR0   ; Pointer for phase b counter 
LDI 0012H,R0 ; Mode 1 (hardware retriggerable), R/W LSB, 00010010B 
STI R0,*+AR0(3)     ; 
LDI 0052H,R0 ; Mode 1, R/W LSB, 01010010B 
STI R0,*+AR0(3)     ; 
LDI 00b2H,R0 ; Mode 1, R/W LSB & MSB, 10110010B 
STI R0,*+AR0(3)     ; 
LDI @ct_phasec,AR0  ; Pointer for phase c counter 
LDI 0012H,R0 ; Mode 1 (hardware retriggerable), R/W LSB, 00010010B 

101 



STI R0,*+AR0(3) ; 
LDI 0052H.R0 ; Mode 1, R/W LSB, 0101001 OB 
STI R0,*+AR0(3) ; 
LDI 00b2H,R0 ; Mode 1, R/W LSB & MSB, 1011001 OB 
STI R0,*+AR0(3) ; 
RETS 

* 

save_setup: LDI tblsize,RC     ; Init loop counter 
RPTB savedp        ; 
LDI   * AR4++( 1 ),R0    ; Start at the top of the dual port memory 
AND  0ffH,R0        ; Mask out all higher bits 
LSH  08H,R0 ; Rotate 8 bits to the left 
LDI   *AR4++(1),R1    ; Get LSB 
AND  0ffH,Rl ; 
OR   R0,R1 ; 

save_dp: STI  R1,*AR3++(1)   ; Save 32-bit data in internal RAM 
LDI   @dp_mem,AR4     ; Reset AR4 
LDI   @blkl,AR3       ; Reset AR3 

* 

LDI   *+AR3(tms_swf),Rl; 
* BZ    init ; Reset if switching frequency is 0 

LDI   @swp_const,R0   ; Determine switching period 
CALL divi ; 
STI   R0,*+AR3(tms_swp); 
LDI   003H,R1 ; 
CALL divi ; 
MPYI 02H,R0 ; 
ADDI 10H,R0 ; 
STI   R0,*+AR3(tms_swp_120) 
LDI   *+AR3(tms_swp),R0; 
LDI   R0,R1 ; Determine ta 
LSH   -1H,R0 ; 

* LDI   *+AR3(tms_btime),R2; 
* SUBI R2,R0 ; 

STI   R0,*+AR3(tms_ta); 
LDI   *+AR3(tms_dt),R0; Determine tb 
LSH  01H,R0 
SUBI R0,R1 
LSH  -1H,R1 
FLOAT Rl 
RND  Rl ; 
STF  Rl,*+AR3(tms_tb); 
LDI   *+AR3(tms_of),R0; Determine stepx 
LDI   *+AR3(tms_blk),Rl; 
MPYI R1,R0 ; 

* BZ    init ; 
LDI   *+AR3(tms_swf),Rl; 
CALL divi ; 
STI   R0,*+AR3(tms_stepx); 
LDI     *+AR3(tms_btime),Rl 
STI      Rl,*+AR3(tms_tboost); 
LDI     *+AR3(tms_oaci),R2; 
FLOAT R2 ; 
STF     R2,*+AR3(tms_ilmin); 
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RETS 

* set overcurrent reference values 
* 

set_oc:   LDI   0FFFH,R0       ; 
MPYI *+AR3(tms_oaci),R0; 
LDI   *+AR3(tms_acs),Rl; 
CALL divi ; 
LDI  @dac_l,AR0     ; 
STI  R0,*AR0        ; 
LDI  0FFFH,R0       ; 
MPYI *+AR3(tms_odci),R0; 
LDI   *+AR3(tms_dcs),Rl; 
CALL divi ; 
LDI   @dac_2,AR0     ; 
STI  R0,*AR0        ; 
RETS 

* 

* sinetbl: this routine generates a SINE lookup table with length equals 
* to the value stored in dp_blk memory location 
* 
sine_tbl: LDI   *+AR3(tms_blk),RC; Get size of lookup table 

LDI  RC,R0 ; 
SUBI 0001H,RC       ; 

* BLS   init ; Reset if size is too small 
FLOAT RO ; 
CALL FPINV ; 1/blk 
LDF  @two_pi,Rl     ; Store 2*pi value 
MPYF R1,R0 ; 1/blk * 2 * pi 
RND  RO ; 
LDF  R0,R6 ; Save the result 
LDF  0.0,R7 ; 
RPTB savejbl       ; 
MPYF3 R6,R7,R0        ; 1/blk * count * 2 * pi 
CALL SIN ; 
RND  RO ; 
ADDF 1.0,R7 ; Increment count 

savejbl: STF  R0,*AR7++(1)    ; Save data into lookup table 
LDI   @sram,AR7      ; Restore lookup table pointer 
RETS ; 

* 
* 

init_swct:LDI @ct_swfreg,ARO   ; Pointer for switching frequency timer 1 
LDI *+AR3(tms_swp),R0; 
STI R0,*+AR0(0)     ; Store LSB of counter 0 
LSH -08H,R0 ; 
STI R0,*+AR0(0)     ; Store MSB of counter 0 
NOP 
NOP 
NOP 
LDI *+AR3(tms_swp_120),R2; 
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checkoutO:LDI OOOOH,RO        ; 
STI R0,*+AR0(3)     ; Latch command 
LDI *+ARO(0),RO     ; 
AND 000FFH,R0       ; Clear all other higher bits 
LDI *+AR0(0),Rl      ; 
LSH 0008H,R1 ; 
AND 00fD0H,Rl        ; 
OR   R1.R0 ; 
CMPI R2,R0 ; 
BGT checkoutO       ; 
LDI *+AR3(tms_swp),R0; 
STI R0,*+AR0(1)     ; Store LSB of counter 1 
LSH -0008H,R0       ; 
STI R0,*+AR0(1)     ; Store MSB of counter 1 
NOP 
NOP 
NOP 
LDI *+AR3(tms_swp_120),R2; 

checkoutlrLDI 0040H,R0        ; 
STI R0,*+AR0(3)     ; Latch command 
LDI *+AR0(l),R0     ; 
AND 000FFH,R0       ; Clear all other higher bits 
LDI *+AR0(l),Rl      ; 
LSH 0008H,R1 ; 
AND 00f00H,Rl        ; 
OR   R1,R0 ; 
CMPI R2,R0 ; 
BGT checkout 1        ; 
LDI *+AR3(tms_swp),R0; 
STI R0,*+AR0(2)     ; Store LSB of counter 2 
LSH -0008H,R0       ; 
STI R0,*+AR0(2)     ; Store MSB of counter 2 

LDI @ct_phasea,ARO   ; Pointer for phase a counter 
LDI *+AR3(tms_btime),Rl ; 
STI R1,*+AR0(0)     ; Store LSB of counter 0 
LDI *+AR3(tms_bdly),Rl ; 
ADDI *+AR3(tms_btime),Rl ; 
STI Rl ,*+AR0( 1)     ; Store LSB of counter 1 
LDI *+AR3(tms_ta),Rl ; 
STI Rl ,*+AR0(2)     ; Store LSB of counter 2 
LSH -08H.R1 ; 
STI Rl ,*+AR0(2)     ; Store MSB of counter 2 

* 

LDI @ct_phaseb,ARO   ; Pointer for phase b counter 
LDI *+AR3(tms_btime),Rl ; 
STI R1,*+AR0(0)     ; Store LSB of counter 0 
LDI *+AR3(tms_bdly),Rl ; 
ADDI *+AR3(tms_btime),Rl ; 
STI R1,*+AR0(1)     ; Store LSB of counter 1 
LDI *+AR3(tms_ta),Rl ; 
STI Rl ,*+AR0(2)     ; Store LSB of counter 2 
LSH -08H.R1 ; 
STI R1,*+AR0(2)     ; Store MSB of counter 2 
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LDI @ct_phasec,ARO   ; Pointer for phase c counter 
LDI *+AR3(tms_btime),Rl ; 
STI R1,*+AR0(0)     ; Store LSB of counter 0 
LDI *+AR3(tms_bdly),Rl ; 
ADDI *+AR3(tms_btime),Rl ; 
STI R1,*+AR0(1)     ; Store LSB of counter 1 
LDI *+AR3(tms_ta),Rl; 
STI Rl ,*+AR0(2)     ; Store LSB of counter 2 
LSH -08H,R1 ; 
STI Rl ,*+AR0(2)     ; Store MSB of counter 2 
LDI     *+AR3(tms_btime),R0; 
STI     R0,*+AR3(tms_tboost); 
RETS 

isr_mode: LDI   *+AR3(tms_mode),R0 
LDI  @mode_ad,Rl     ; 
ADDI R1,R0 ; 
BNZ  RO ; 
RETS ; 

mode and: BR   modeO ;Stop 
BR   model Test Mode (ARCP Open-loop) 
BR   modeO DC to AC Mode 
BR   modeO Motor Control Mode - Forward 
BR   modeO Motor Control Mode - Reverse 
BR   modeO Actuator Control Mode - Open 
BR   modeO Actuator Control Mode - Close 
BR   modeO Linear Actuator Mode - Open 
BR   modeO Linear Actuator Mode - Close 
BR   modeO DC to DC Boost Mode 
BR   modeO DC to DC Buck Mode 
BR   modeO Stop 

* 
BR   modeO Stop 

modeO: LDI  08H,IE         ; Disable interrupts 0,1,2 
LDI  @ct_port,AR0   ; Pointer for counter/timer control register 
LDI  @clear_main,R0    ; 
STI  R0,*AR0        ; Disable all output 
LDI   030H,R0                ; 

wait30: SUBI 01H,R0                 ; 
BNZ  wait30                  ; 
LDI  @reset_out,R0      ; 
STI  R0,*AR0        ; Disable all counter/timer output 
AND  08H,IF         ; Clear all pending interrupts 0,1,2 
LDI     00H.R0               ; 
STI  R0,*+AR4(1)     ; 
LDI  @dp int,IR0     ; 
STI  R0,*+AR4(IR0)   ; 
RETS                ;F Return 

model:   MPYF *+AR3(tms_tb),R7; 
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Disable timer interrupt 

FIX  R7 ; 
ADDI *+AR3(tms_ta),R7; 
RETS ; Return 

* timerO: Motor startup timer 
* 

timeO:   PUSH    RO ; 
PUSHF RO ; 
PUSH ARO ; 
LDI   *+AR3(tms_stepx),RO; 
ADDI 01H,R0 ; 
STI   R0,*+AR3(tms_stepx); 
CMPI *+AR3(stopfreq),R0; 
BLT  looptimerO      ; 
LDI   000H.R0        ; 
LDI  @ctrI,AR0      ; 
STI   R0,*+ARO(20H)   ; Clear counter 
ANDN mask_timerO,IE 
POP    ARO 
POPF  RO 
POP    RO 
RETI ; 

looptimerO: LDF *+AR3(vperfreq),R0; 
ADDF *+AR3(tms_acv),R0; 
RND  RO ; 
STF  R0,*+AR3(tms_acv); 
POP    ARO 
POPF  RO 
POP    RO 
RETI ; 

* 

* timerl: Discharging circuit 

timel:   PUSH    RO ; 
PUSHF RO ; 
PUSH ARO ; 
LDI   @d_output,ARO   ; 
LDI     0FFH,R0        ; 
STI  R0,*AR0        ; 
LDI   000H,R0        ; 
LDI  @ctrl,AR0      ; 
STI   R0,*+AR0(30H)   ; Clear counter 

Disable timer interrupt ANDN mask_timerl,IE 
POP    ARO 
POPF  RO 
POP    RO 
RETI ; 

* irsO: Phase A interrupt service routine 
**isrO for closed-loop control of ARCP resonant converter 

♦written by David Floodeen 
* 
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isrO: PUSH 
PUSH 

ST 
IR1 

PUSH R7 
PUSHF R7 
PUSH R6 
PUSHF R6 
PUSH R5 
PUSHF R5 
PUSH R4 
PUSHF R4 
PUSH R3 
PUSHF R3 
PUSH R2 
PUSHF R2 
PUSH Rl 
PUSHF Rl 
PUSH RO 
PUSHF RO 
PUSH ARO 

Save registers 

wait: 

LDI 
LDI 
LDI 
LDI 
LDI 
SUBI 
BNZ 

@acs,ARO 
@bcs,AR2 
*ARO,RO 
*AR2,R1 
00cH,R2 
01H,R2 
wait 

; Pointer for phase a A/D converter 
; Pointer for phase b A/D converter 
; initiate a new conversion (don't use these values, they are time-late) 

; delay loop to allow time for the slower A/D converters 

* READ and STORE SAMPLED CURRENTS 
* 

LDI       *AR0,R0 ; READ Va AND ia 
LDI       *AR2,R2 ; Read Vb and ib 

***Get ia and ib... Assuming ia is msb of A/D word as in Tuan's code 
LSH      04H,R0 
ASH      -14H,R0 
FLOAT RO ; RO = ia 

LSH      04H,R2 
ASH      -14H,R2 
FLOAT R2 R2 = ib 

* This section scales the A/D current using a scaling factor to make them 
* actual currents 
* Final output of this section RO = ia, R2 = ib 

***assuming tms_acscale is set to the current scaling word calculated by Ron Hanson*" 

MPYF   *+AR3(tms_acscale),R0 
RND     RO ;R0 = ia 
STF       R0,*+AR3(ia) ; STORE ia 
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MPYF   *+AR3(tms_acscale),R2 
RND     R2 ;R2 = ib 
STF       R2,*+AR3(ib) ; STORE ib 

*This section reads sin_theta and cos_theta from the lookup table 

** »assuming tms_cos is block size / 4 vice tms_13 or tms_23 

LDI   *+AR3(tms_stepx),IRl ; 
LDF   *AR7++(IR1)%,R6 ;R6 = sinjheta 

LDI   *+AR3(tms_cos),IRl ; 
SUBI *+AR3(tms_stepx),IRl        ;subtract step to compensate for previous increment 
LDI  AR7,AR6 ;use AR6 to not further increment AR7 
LDF   * AR6++(IR1 )%,R7 ;read twice to get desired value in R7 
LDF      *AR6++(IR1)%,R7 ;R7 = cosjheta 

*This section converts ia and ib to iqs and ids then to iqe and ide 

***assumes sqrt3_3 = (root3)/3, sqrt23_3 = (2root3)/3 

LDF      R0,R1 ;RO = iqs = ia = Rl 

MPYF   @sqrt3_3,Rl 
MPYF   @sqrt23_3,R2 
SUBF    R2,R1 

MPYF3 R7,R0,R2 
MPYF3 R6,R1,R3 
SUBF    R3,R2 

MPYF3 R6,R0,R3 
MPYF3 R7,R1,R4 
ADDF   R4,R3 

"This section calculates iqq and idd 

Rl=(root3)/3*ia 
R2=(2root3)/3*ib 
Rl = ids = (root3/3)ia-(2root3/3)ib 

R2=iqs(cos_theta) 
R3=ids(sin_theta) 
R2=iqe=iqs(cos_theta)-ids(sin_theta) 

R3=iqs(sin_theta) 
R4=ids(cos_theta) 
R3=ide=iqs(sin_theta)+ids(cos_theta) 

LDF *+AR3(tms_iqe),R0 
SUBF R2,R0 
LDF *+AR3(tms_ide),Rl 
SUBF R3,R1 

R0=iqq=iqe* - iqe 

Rl=idd=ide* - ide 

♦Integrate using trapazoidal method to calculate iq_int and idint 
* and calculates Vqe and Vde 
***assumming iq_int, id_int, iqq, idd initialized = 0 
***assumming T_2 = T/2 is calculated already 

LDF R0,R2 ;R0=R2=iqq 
ADDF *+AR3(iqq),R2   ;R2=iqq[n-l]+iqq[n] 
STF R0,*+AR3(iqq)   ;store iqq for next time 
MPYF *+AR3(T_2),R2 ;R2=T/2(iqq[n-l]+iqq[n]) 
ADDF *+AR3(iq_int),R2 ;R2=iq_int[n-l]+T/2(iqq[n-l]+iqq[n]) 
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STF R2,*+AR3(iq_int) 
MPYF *+AR3(Kiq),R2  ; 
MPYF *+AR3(Kpq),R0 ; 
ADDF R0,R2 

;store iq_int for next time 

;R2=Vqe 

LDF R1,R3 ;Rl=R3=idd 
ADDF *+AR3(idd),R3   ;R3=idd[n-l]+idd[n] 
STF Rl,*+AR3(idd)   ;store idd for next time 
MPYF *+AR3(T_2),R3 ;R3=T/2(idd[n-l]+idd[n]) 
ADDF *+AR3(id_int),R3 ;R3=id_int[n-l]+T/2(idd[n-l]+idd[n]) 
STF R3,*+AR3(id_int) ;store id_int for next time 
MPYF *+AR3(Kid),R3  ; 
MPYF *+AR3(Kpd),Rl ; 
ADDF R1,R3 ;R3=Vde 

♦This section transforms Vqe and Vde to Vqs and Vds 

MPYF3 R2,R7,R0 
MPYF3 R3,R6,R1 
ADDF   R1,R0 

MPYF3 R3,R7,R1 
MPYF3 R2,R6,R4 
SUBF    R4,R1 

;R0=Vqe*cos theta 
;Rl=Vde*sin theta 
;R0=Vqs 

;Rl=Vde*cos theta 
;R4=Vqe*sin theta 
;Rl=Vds 

♦This section transforms Vqs and Vds to Va, Vb, Vc 
***assumes @half=.5, @sqrt3=1.7320508, @zero=0.0 

LDF R0,R3 

MPYF @half,R0 
MPYF @half,Rl 
MPYF @sqrt3,Rl 
LDF @zero,R2 
SUBF3 R0,R2,R4 
SUBF R1,R4 

SUBF3 R3,R2,R5 
SUBF R4,R5 

;Vqs=R0 = R3=Va 

;R0=.5Vqs 
;Rl=.5Vds 
;Rl=(root3)Vds/2 
;R2=0.0 
;R4= -.5Vqs 
;R4= -.5Vqs-(root3)Vds/2 = Vb 

;R5= -Va 
;R5= -Va-Vb = Vc 

*This section calculates new duty_counta, b, c 

;R3=Va*sin theta 

;R3=dutycount_a 

MPYF   R6,R3 
ADDF   *+AR3(tms_ta),R3 
FIX       R3 

MPYF R6,R4 
ADDF *+AR3(tms_ta),R4 
FIX R4 

MPYF R6,R5 
ADDF *+AR3(tms_ta),R5 
FIX R5 

;R4=Vb*sin theta 

;R4=dutycount_b 

;R5=Vc*sin theta 

;R5=dutycount_c 
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This section loads new duty_counta, b, c 

LDI @ct_phasea,ARO 
STI R3,*+AR0(2) 
LSH -08H,R3 
STI R3,*+AR0(2) 

LDI @ct_phaseb,ARO 
STI R4,*+AR0(2) 
LSH -08H,R4 
STI R4,*+AR0(2) 

LDI @ct_phasec,ARO 
STI R5,*+AR0(2) 
LSH -08H,R5 
STI R5,*+AR0(2) 

;stores lsb of counter 

;stores msb of counter 

jstores lsb of counter 

jstores msb of counter 

jstores lsb of counter 

;stores msb of counter 

♦This section clears the interupt and the stack 

ANDN  maskintOJF   ; Clear interrupt 0 

POP ARO 
POPF RO 
POP RO 
POPF Rl 
POP Rl 
POPF R2 
POP R2 
POPF R3 
POP R3 
POPF R4 
POP R4 
POPF R5 
POP R5 
POPF R6 
POP R6 
POPF R7 
POP R7 
POP IR1 
POP ST 

RETI ; Return and enable interrupt 

isrl: Phase B interrupt service rountine 

; Return interrupt not used 
isrl:  NOP 

RETI 
* 

* isr2: Phase C interrupt service rountine 
isr2:   NOP 

RETI ; Return interrupt not used 
* 

irs3: Dual port memory interrupt service rountine 
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isr3:    PUSH ST ; Save registers 
PUSH DP ; 
PUSH IR1 ; 
PUSH R7 ; 
PUSHF R7 ; 
PUSH R6 ; 
PUSHF R6 ; 
PUSH R5 ; 
PUSHF R5 ; 
PUSH R4 ; 
PUSHF R4 ; 
PUSH R3 ; 
PUSHF R3 ; 
PUSH R2 ; 
PUSHF R2 ; 
PUSH Rl ; 
PUSHF Rl ; 
PUSH RO ; 
PUSHF RO ; 

LDI   @dp_cint,IRO    ; 
LDI   *+AR4(IRO),RO   ; Clear interrupt 
CALL read_cmd       ; 
ANDN mask_int3,IF    ; Clear interrupt 3 

POPF RO 
POP RO 
POPF Rl 
POP Rl 
POPF R2 
POP R2 
POPF R3 
POP R3 
POPF R4 
POP R4 
POPF R5 
POP R5 
POPF R6 
POP R6 
POPF R7 
POP R7 
POP IR1 
POP DP 
POP ST 

RETI ; Return and enable interrupt 

.end 
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